

User Guide | Beta
v10.3.0 | Revision 1.0

Copyrights
The following copyrights will apply to the extent your Licensed Product includes these features and/or data.

You may print one (1) copy of this document for your personal use. Otherwise, no part of this document may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by
any means electronic, mechanical, magnetic, optical, or otherwise, without prior written permission from ALK
Technologies, Inc.

Copyright © 1986-2017 ALK Technologies, Inc. All Rights Reserved.

ALK Data © 2017 – All Rights Reserved.

ALK Technologies, Inc. reserves the right to make changes or improvements to its programs and documentation
materials at any time and without prior notice.

PC*MILER®, CoPilot® Truck™, ALK®, RouteSync®, and TripDirect® are registered trademarks of ALK Technologies,
Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and other countries.

IBM is a registered trademark of International Business Machines Corporation.

Xceed Toolkit and AvalonDock Libraries Copyright © 1994-2016 Xceed Software Inc., all rights reserved. The
Software is protected by Canadian and United States copyright laws, international treaties and other applicable
national or international laws.

Satellite Imagery © DigitalGlobe, Inc. All Rights Reserved.

Weather data provided by Environment Canada (EC), U.S. National Weather Service (NWS), U.S. National Oceanic
and Atmospheric Administration (NOAA), and AerisWeather. © Copyright 2017. All Rights Reserved.

Traffic information provided by INRIX © 2017. All rights reserved by INRIX, Inc.

Standard Point Location Codes (SPLC) data used in PC*MILER products is owned, maintained and copyrighted by
the National Motor Freight Traffic Association, Inc.

Statistics Canada Postal Code™ Conversion File which is based on data licensed from Canada Post Corporation.

Natural Resources Canada information licensed under the Contains information licensed under the Open Government
License – Canada. http://open.canada.ca/en/open-government-licence-canada

United Kingdom full postal code data supplied by Ordnance Survey Data © Crown copyright and database right 2017.
OS OpenData™ is covered by either Crown Copyright, Crown Database copyright, or has been licensed to the Crown.

Certain Points of Interest (POI) data by Infogroup © Copyright 2017. All Rights Reserved.

Geographic feature POI data compiled by the U.S. Geological Survey.

Oil and Gas field content provided by GEOTrac Systems Inc. © Copyright 2017. All rights reserved.

Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

Copyright HERE Data © 2017 – All rights Reserved. HERE Data © is subject to the terms set forth at
http://corporate.navteq.com/supplier_terms.html.

Source of map data for Mexico provided by lnstituto Nacional de Estadistica y Geografia. The use of this information
does not represent an official position by INEGI, nor does INEGI endorse, integrate, sponsor or support ALK
Technologies, Inc.

Retail Fuel Prices for Pilot Flying J locations are subject to change and are subject to Pilot Flying J’s disclaimer set
forth at http://www.pilotflyingj.com/disclaimer.

National Elevation Data produced by the U.S. Geological Survey.

Geospatial Information Authority of Japan website (http://www.gsi.go.jp/kankyochiri/gm_japan_e.html).

Copyright SanGIS 2009 – All Rights Reserved.

Data provided by permission of King County, Washington.

Data provided by permission of © Jackson County, Georgia.

http://www.gsi.go.jp/kankyochiri/gm_japan_e.html

 PC*MILER|Connect User’s Guide i

Table of Contents

PC*MILER® Product Line END-USER LICENSE AGREEMENT iv

Chapter 1: Introduction ...1

1.1 Requirements ...2
1.2 Installing PC*MILER|Connect ..3
1.3 Technical Support ..3
1.4 Accessing User Guides for PC*MILER Products ...4
1.5 Licensing ..4
1.6 Applications That Use PC*MILER|Connect ...4
1.7 About This Manual ..5
1.8 What’s New in PC*MILER|Connect Version 31? ..5

Chapter 2: Overview and Basic Concepts ..7

2.1 PC*MILER|Connect Server Engine and Trips ..7
2.2 Steps for Simple Distance Calculations ...8
2.3 Sample Sequence for Building a Trip ..8
2.4 Tips for Using the API’s ..9
2.5 Stop Formats ..10
2.6 Specifying Street Addresses ..10
2.7 Specifying a Non-U.S. Country ...11
2.8 Entering Latitude/Longitude Points As Stops..12
2.9 Reports ...14
2.10 Trip Options ...14
2.11 Query for Version Number and Network Connections16

Chapter 3: Using the PC*MILER|Connect API’s ...17

3.1 Initialization and Cleanup ..17
3.2 Building a Trip ...19
3.3 Simple Distance Calculation ..20
3.4 Getting Toll Costs ..24

3.4.1 Toll Calculation With Custom Vehicle Dimensions27
3.5 Currency Conversion ...30
3.6 Managing Stops ...30
3.7 Validating City Names ...34
3.8 Validating Street Addresses ...38
3.9 Functions for Converting Special Characters ..38
3.10 Setting and Getting the Region ..39
3.11 Switching the Data Set ...41
3.12 Country Code Format Options ...41
3.13 Using Mexican Postal Codes ...41
3.14 Setting the ‘NL’ Abbreviation Preference ...42
3.15 State/Country Lists...43
3.16 Translating Between Latitude/Longitudes and Places43

 PC*MILER|Connect User’s Guide ii

3.17 SPLCs As Stops ...45
3.18 Route Options and Setting Defaults ...46
3.19 Routing With Custom Vehicle Dimensions ...55
3.20 Using Route Profiles ..57
3.21 Using ETA/ETD and Traffic Data ...58
3.22 Least Cost Routing Options ...64
3.23 Getting Location Information ..65
3.24 Location Radius Search Functionality ...66
3.25 Report Generation and Retrieval ...67
3.26 Getting Trip Leg Information ..72
3.27 Optimizing the Stop Sequence ...73
3.28 Hub Routing ...73
3.29 Calculating Air Distance ..74
3.30 Designating Stops As Waypoints ...74
3.31 Tracking Equipment On Roads ..74
3.32 Using Custom Routing ...75
3.33 Avoid, Favor, and Override Roads From Within Connect75
3.34 Geofence Functions ...77
3.35 Using Custom Places ...77
3.36 Enabling Hazardous Routing From Your Application78
3.37 Using PC*MILER|Energy Data ...80
3.38 Converting Lat/Longs To Obtain Trip Information80
3.39 Find POI’s Along a Route (FPAR) ..83

3.39.1 POI Types and Amenities ...90
3.40 Hours of Service (HOS) Management ...91

3.40.1 HOS-Specific Detailed Error Codes ...95
3.41 PC*MILER|Connect Error Handling ...96

Chapter 4: PC*MILER|RouteMatrix API’s ..98

4.1 RouteMatrix Sample Code ...103

Chapter 5: PC*MILER|Connect RouteSync® Functions ...106

5.1 RouteSync Function Descriptions..106
5.2 RouteSync Sample Integration ..111
5.3 Levels of Route Compliance Defined ..112
5.4 JSON Format Setting in PCMSERVE.INI ..112

Chapter 6: Using PC*MILER|Connect From ‘C’ ..113

Chapter 7: Using PC*MILER|Connect From Visual Basic ...115

7.1 Caveats for Visual Basic ..115
7.2 Strings utility ..116
7.3 Using PC*MILER|Connect With Web Applications Running Under

Internet Information Services ..116
7.4 Configuring/Administrating Internet Information Services.......................117

Chapter 8: Using PC*MILER|Connect From MS Access ..118

8.1 About accdem32.mdb ..118

 Table of Contents iii

Chapter 9: Using the PC*MILER COM Interface ..120

9.1 Working With Objects ...121
9.2 Objects: Descriptions and Relationships ...122
9.3 Objects, Properties and Methods Listed ..123
9.4 Detailed Description of Properties and Methods128

9.4.1 Server OBJECT PROPERTIES AND METHODS128
9.4.2 Trip OBJECT PROPERTIES AND METHODS140
9.4.3 Options OBJECT PROPERTIES AND METHODS156
9.4.4 OptionsEx PROPERTIES AND METHODS162
9.4.5 PickList PROPERTIES AND METHODS163
9.4.6 Report PROPERTIES AND METHODS ...164
9.4.7 HTMLReport PROPERTIES AND METHODS166
9.4.8 ReportData PROPERTIES AND METHODS..................................167
9.4.9 Segment PROPERTIES AND METHODS169
9.4.10 LegInfo PROPERTIES AND METHODS172
9.4.11 Double PROPERTIES AND METHODS173
9.4.12 OLE CONSTANTS ..174

 Appendix A: Location of Header Files, Additional Documentation & Sample
Code ..175

Appendix B: Constants and Error Code Descriptions ...176

Appendix C: State/Province/Country Abbreviations ...181

Appendix D: Formats for Postal Codes by Country...191

Appendix E: Trouble-shooting Guide ..194

Appendix F: The TCP/IP Interface ..197

Appendix G: Alphabetical Function Index ...200

Appendix H: Deprecated Functions & Options ..206

Appendix I: The PCMSERVE.INI File ...210

 PC*MILER|Connect User’s Guide iv

PC*MILER® Product Line

END-USER LICENSE AGREEMENT

1. Grant of License: Subject to the terms, conditions, use limitations and payment of fees as set
forth herein, ALK Technologies, Inc. ("ALK") grants the end-user ("you") a non-assignable,
non-transferable, non-exclusive license to install and use the PC*MILER solution(s)
(including traffic data or any other subscriptions as applicable) you have purchased
("PC*MILER") on a single personal computer. The PC*MILER software, data and
documentation are provided for your personal, internal use only and not for resale. They are
protected by copyright held by ALK and its licensors and are subject to the following terms
and conditions which are agreed to by you, on the one hand, and ALK and its licensors
(including their licensors and suppliers) on the other hand.

2. Title: You acknowledge that the PC*MILER computer programs, data, concepts, graphics,

documentation, manuals and other material owned by, developed by or licensed to ALK,
including but not limited to program output (together, "program materials"), are the exclusive
property of ALK or its licensors. You do not secure title to any PC*MILER program materials
by virtue of this license.

3. Copies: You may make one (1) copy of the PC*MILER program materials, provided you

retain such copy in your possession and use it solely for backup purposes. You agree to
reproduce the copyright and other proprietary rights notices of ALK and its licensors on such
a copy. Otherwise, you agree not to copy, reverse engineer, interrogate, or decode any
PC*MILER program materials or attempt to defeat protection provided by ALK for preventing
unauthorized copying or use of PC*MILER or to derive any source code or algorithms
therefrom. You acknowledge that unauthorized use or reproduction of copies of any program
materials or unauthorized transfer of any copy of the program materials is a serious crime and
is grounds for suit for damages, injunctive relief and attorney's fees.

4. Limitations on Transfer: This license is granted to you by ALK. You may not directly or

indirectly lease, sublicense, sell, disseminate, or otherwise transfer PC*MILER or any
PC*MILER program materials to third parties, or offer information services to third parties
utilizing the PC*MILER program materials without ALK's prior written consent. To comply
with this limitation, you must uninstall and deactivate PC*MILER from your computer prior
to selling or transferring that computer to a third party.

5. Anti-Piracy Protection: PC*MILER may include product activation and other technology to

prevent unauthorized use and copying. If provided with an install product key code (the
"Product Key Code"), or any other similar mechanism, you will need to activate PC*MILER
with the associated method in order to use it. If you try to activate or install an excessive or
unauthorized number of times or in an unauthorized environment, the ALK Anti-Piracy
Protection may cause PC*MILER to lock and prevent you from further activating or using
PC*MILER. Refer to ALK's help page at https://activate.alk.com for more information about
our Product Activation and Anti-Piracy Protection.

 PC*MILER Product End-User License Agreement v

6. Limitations on Network Access: You may not allow end-users or software applications on
other computers or devices to directly or indirectly access this copy of PC*MILER via any
type of computer or communications network (including but not limited to local area networks,
wide area networks, intranets, extranets, the internet, virtual private networks, Wi-Fi,
Bluetooth, and cellular and satellite communications systems), using middleware (including
but not limited to Citrix MetaFrame and Microsoft Terminal Server) or otherwise (including
but not limited to access through PC*MILER interface products), or install or use PC*MILER
on a network file server, without first notifying ALK, executing a written supplemental license
agreement, and paying the license fee that corresponds to the number and types of uses to
which access is to be allowed.

7. Limitations on Data Extraction: You may manually extract data (including but not limited to

program output such as distances, maps, and driving directions) from PC*MILER and use it
in other applications on the same computer on which PC*MILER is legally licensed and
installed, as permitted below. You may not transfer data extracted from PC*MILER onto any
other computer or device unless you have licensed PC*MILER for that computer or
device. You agree that you will not, nor will you permit your trade partners or anyone else to,
use content derived from PC*MILER, including route line data, nor display such data or
integrate such data into another provider's service, including, but not limited to, Google or
Bing. You agree not to pre-fetch, retrieve, cache, index, or store any data, content, or other
portion of the product output at any time, provided, however, that you may temporarily store
(for less than thirty (30) days) limited amounts of such content for the sole and exclusive
purpose of enhancing the performance of your implementation due to network latency, and
only if you do so securely and in a manner that: (a) does not permit use of the content outside
of the scope of this Agreement; (b) does not manipulate or aggregate any content or portion
thereof; (c) does not prevent ALK from accurately tracking usage; and (d) does not modify
attribution of the product in any way.

8. Limitations on Mobile Communications: Without limiting the generality of the foregoing, you

may not transmit PC*MILER street-level driving directions through mobile communications
systems such as satellite, or cellular services or to mobile devices such as computers, telematics
systems, on board or mobile computers or Smartphones, handhelds, pagers, electronic
recording devices or telephones without first executing a written supplemental license
agreement with ALK and paying the license fee that corresponds to the number and types of
devices and systems to and through which transmission is to be permitted.

9. Limitations on Disclosure: You may disclose PC*MILER distances to trading partners, in the

course of their providing services to you, for specific origin-destination moves for which you
provide transportation services and use PC*MILER distances as a basis for payment. You may
not make any other disclosure of PC*MILER programs and materials, including, but not
limited to, program output, to anyone outside the legal entity that paid for and holds this
license, without prior written permission of ALK. You acknowledge that the PC*MILER
programs and materials, developed by or licensed to ALK are very valuable to ALK and its
licensors, and their use or disclosure to third parties, except as permitted by this license or by
a written supplemental license agreement with ALK, is strictly prohibited.

10. Security: You agree to take reasonable and prudent steps to safeguard the security of the

PC*MILER program materials and to notify ALK immediately if you become aware of the

 PC*MILER|Connect User’s Guide vi

theft or unauthorized possession, use, transfer or sale of the PC*MILER program materials
licensed to you by ALK.

11. Acceptance: You are deemed to have accepted the PC*MILER program materials upon

receipt.

12. Warranties: ALK represents and warrants that:

a) For ninety (90) days from date of purchase, PC*MILER, when delivered and properly
installed, will function substantially according to its specifications on a computer
purchased independently by you.

b) For ninety (90) days from date of purchase, the software media on which ALK provides
PC*MILER to you will function substantially free of errors and defects. ALK will replace
defective media during the warranty period at no charge to you unless the defect is the
result of accident, abuse, or misapplication of the product.

c) THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITING THE GENERALITY OF
THE FOREGOING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR USE. THE PC*MILER PROGRAM, DATA AND
DOCUMENTATION IS SOLD "AS IS". IN NO EVENT SHALL ALK OR ITS
LICENSORS BE LIABLE FOR ANY INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES SUCH AS, BUT NOT LIMITED TO, LOSS IN CONNECTION WITH OR
ARISING OUT OF THE EXISTENCE OF THE FURNISHING, FUNCTIONING OR
USE OF ANY ITEM OF SOFTWARE, DATA OR SERVICES PROVIDED FOR IN
THIS AGREEMENT. IN NO EVENT SHALL DAMAGES TO WHICH ALK MAY BE
SUBJECT UNDER THIS AGREEMENT EXCEED THE CONTRACT PRICE. THIS
WARRANTY SHALL NOT ACCRUE TO THE BENEFIT OF THIRD PARTIES OR
ASSIGNEES.

13. Disclaimer: The data may contain inaccurate, incomplete or untimely information due to the

passage of time, changing circumstances, sources used and the nature of collecting
comprehensive geographic data, any of which may lead to incorrect results. PC*MILER's
suggested routings, fuel and traffic data are provided without a warranty of any kind. The
user assumes full responsibility for any delay, expense, loss or damage that may occur as a
result of their use.

14. Termination: This Agreement will terminate immediately upon any of the following events:

a) If you seek an order for relief under the bankruptcy laws of the United States or similar
laws of any other jurisdiction, or a composition with or assignment for the benefit of
creditors, or dissolution or liquidation, or if proceedings under any bankruptcy or
insolvency law are commenced against you and are not discharged within thirty (30)
calendar days.

b) If you materially breach any terms, conditions, use limitations, payment obligations, or any
other terms of this Agreement.

c) Upon expiration of any written supplemental license agreement between you and ALK of
which this license is a part.

 PC*MILER Product End-User License Agreement vii

15. Obligations on Termination: Termination or expiration of this Agreement shall not be
construed to release you from any obligations that existed prior to the date of such termination
or expiration.

16. Hold Harmless and Indemnity: Except as otherwise provided in your agreement with ALK,

the following article applies: To the maximum extent permitted by applicable law, you agree
to hold harmless and indemnify ALK and its parent company, subsidiaries, affiliates, officers,
agents, licensors, owners, co-branders, other partners, and employees from and against any
third party claim (other than a third party claim for Intellectual Property Rights) arising from
or in any way related to your use of PC*MILER, including any liability or expense arising
from all claims, losses, damages (actual and/or consequential), suits, judgments, litigation
costs and attorney's fees, of every kind and nature. ALK shall use good faith efforts to provide
you with written notice of such claim, suit or action.

17. Disclosure for Products Containing Certain Data:

a) Historical or Real-time Traffic data: traffic data, including historical traffic data, is
licensed as an optional subscription service which must be renewed annually for continued
use. ALK and its licensor(s) will use commercially reasonable efforts to make traffic data
available at least 99.5% of the time each calendar month, excluding minor performance or
technical issues as well as downtime attributable to necessary maintenance, and Force
Majeure.

This data is provided to you "as is," and you agree to use it at your own risk. ALK and its
licensors (and their licensors and suppliers) make no guarantees, representations or
warranties of any kind, express or implied, arising by law or otherwise, including but not
limited to, content, quality, accuracy, completeness, effectiveness, reliability, fitness for a
particular purpose, usefulness, use or results to be obtained from this Data, or that the Data
or server will be uninterrupted or error-free.

18. Limitations on Export: You hereby expressly agree not to export PC*MILER, in whole or in

part, or any data derived therefrom, in violation of any export or other laws or regulations of
the United States. You acknowledge and agree that ALK commodities, technology or
software that will be exported from the United States will be in accordance with U.S. Export
Administration Regulations. Diversion contrary to U.S. law is prohibited. Export or re-export
of ALK goods may require an export license or may be prohibited as it pertains to
commodities, technology or software of U.S. origin.

19. Aggregated Data: Except as otherwise provided in your agreement with ALK, the following

article applies: ALK may, from time to time, share information about You with parent and
sister or affiliated companies for business purposes and when necessary for it to perform work
under this End User License Agreement. In addition, ALK may, and is hereby authorized to,
use, share and provide certain aggregated, non-identifiable information derived from Your
use of PC*MILER to third parties.

20. ALK Cloud Feature: ALK Cloud feature, if used, will store in an anonymized way Your data

in a cloud account in order to allow You to securely synchronize Your data with other users
in Your organization. End-User data is deemed the confidential information of the End-User.
For more information, you may refer to ALK's Privacy Policy.

 PC*MILER|Connect User’s Guide viii

21. Internet-Based Services Components: Certain features of PC*MILER require connection to
the Internet directly or through a wireless connection in order to function. Such features may
result in the transfer of certain data over such connection, which may or may not be encrypted.
You are solely responsible for obtaining any necessary Internet, data or wireless subscription
plans with the applicable service providers and you must comply with applicable third party
terms of agreement when using PC*MILER. You further acknowledge that ALK is not
responsible for the availability of the Internet or wireless connections or the security or
integrity of data transmitted over such connections.

22. Geographic Restrictions: The Content and Services (as defined below) are provided for

access for different areas in the world. You acknowledge and agree that you may not be able
to access all or some of the same Content and Services depending as to where you are located
in the world. Access to PC*MILER may not be legal by certain persons or in certain
countries. At all times, you are responsible for compliance with local laws.

23. Content and Services: PC*MILER may provide you with access to ALK's proprietary

websites including without limitation at www.alk.com (the "Website") and products and
services accessible thereon, and certain features, functionality, and content accessible on or
through PC*MILER may be hosted on the Website (collectively, "Content and
Services"). Your access to and use of such Content and Services are governed by this License
and the Website's terms of use located at www.alk.com, which are incorporated herein by this
reference. Your access to and use of such Content and Services may require you to
acknowledge your acceptance of such terms of use and/or to register with the Website, and
your failure to do so may restrict you from accessing or using certain of PC*MILER's features
and functionality. Any violation of such terms of use will also be deemed a violation of this
License. ALK DOES NOT PROVIDE ANY WARRANTY FOR, OR GUARANTEE THE
AVAILABILITY OF, PRODUCTS AND SERVICES PURCHASED OR ADVERTISED
THROUGH THE APPLICATION.

24. Technical Support: For one (1) year from date of purchase, ALK will provide you technical

support on the PC*MILER product(s) purchased to those that are current on their payment.

25. Disclosure for Optional Content Displayed in PC*MILER for Additional Purchase: Traffic

data, including historical traffic data, and any other optional content licensed as a subscription
service must be renewed annually for continued use. You agree and acknowledge that ALK
is not responsible for the content displayed which belongs to third parties, and advising you
for the end of your subscription.

26. Additional Use Terms, Conditions, Restrictions and Obligations: This Agreement and your

use of PC*MILER is expressly subject to the ALK Privacy Policy and the HERE and ALK
End User License Agreement terms and conditions respectively ("HERE EULA") and ("ALK
EULA") set forth below. YOU ACKNOWLEDGE AND AGREE THAT YOU MAY NOT
USE PC*MILER IF YOU DO NOT ACCEPT THE TERMS AND CONDITIONS OF BOTH
THE HERE AND ALK EULA AND YOU ACKNOWLEDGE THAT YOU HAVE
REVIEWED AND ACCEPT THE TERMS AND CONDITIONS OF BOTH THE HERE
AND ALK EULA BY INSTALLING OR ACTUALLY USING PC*MILER.

 PC*MILER Product End-User License Agreement ix

27. Copyright: United States copyright law and international treaty provisions protect
PC*MILER and the data transmitted by PC*MILER. You agree that no title to the intellectual
property in PC*MILER or the data is transferred to you. You further acknowledge that title
and ownership rights will remain the exclusive property of ALK or its licensors, and you will
not acquire any rights to PC*MILER or the data except as expressly set out in this license.
You agree that any copies of PC*MILER will contain the same proprietary notices that appear
on and in PC*MILER. The Copyright to PC*MILER is held by ALK Technologies, Inc., 1
Independence Way, Princeton, NJ 08540 USA. Full contact details are available at
www.alk.com.

28. Miscellaneous: This agreement shall be construed and applied in accordance with the laws

of the State of New Jersey. The Courts of the State of New Jersey shall be the exclusive forum
for all actions or interpretation pertaining to this agreement. Any amendments or addenda to
this agreement shall be in writing executed by all parties hereto. This is the entire agreement
between the parties and supersedes any prior or contemporaneous agreements or
understandings. Should any provision of this agreement be found to be illegal or
unenforceable, then only so much of this agreement as shall be illegal or unenforceable shall
be stricken and the balance of this agreement shall remain in full force and effect.

29. Date: This EULA was last updated on August 9, 2017. Visit https://www.pcmiler.com/eula

for regular updates.

General Content Terms and Conditions

The following terms shall apply to the use of map data for the countries specified below
to the extent that your product and/or services uses map data for each respective country:

FOR HERE DATA

This end user license agreement applies to HERE data included in your Software ("HERE
EULA"), if any, as well as to HERE data you obtain separately that is formatted for use
with your Software.

The data ("Data") is provided for your personal, internal use only and not for resale. It is
protected by copyright, and is subject to the following terms and conditions which are
agreed to by you, on the one hand, and ALK Technologies Inc. ("ALK") and its licensors
(including their licensors and suppliers) on the other hand.

© 2017 HERE. All rights reserved.

Personal Use Only: You agree to use this Data together with PC*MILER for the solely
personal, non-commercial purposes for which you were licensed, and not for service
bureau, time-sharing or other similar purposes. Accordingly, but subject to the restrictions
set forth in the following paragraphs, you may copy this Data only as necessary for your
personal use to (i) view it, and (ii) save it, provided that you do not remove any copyright
notices that appear and do not modify the Data in any way. You agree not to otherwise
reproduce, copy, modify, decompile, disassemble or reverse engineer any portion of this
Data, and may not transfer or distribute it in any form, for any purpose, except to the extent

http://www.alk.com/
https://www.pcmiler.com/eula

 PC*MILER|Connect User’s Guide x

permitted by mandatory laws. Multi-disc sets may only be transferred or sold as a complete
set as provided by ALK and not as a subset thereof.

Restrictions: Except where you have been specifically licensed to do so by ALK, and
without limiting the preceding paragraph, you may not (a) use this Data with any products,
systems, or applications installed or otherwise connected to or in communication with
vehicles, capable of vehicle navigation, positioning, dispatch, real time route guidance,
fleet management or similar applications; or (b) with or in communication with any
positioning devices or any mobile or wireless-connected electronic or computer devices,
including without limitation cellular phones, palmtop and handheld computers, pagers, and
personal digital assistants or PDAs.

Warning: The Data may contain inaccurate or incomplete information due to the passage
of time, changing circumstances, sources used and the nature of collecting comprehensive
geographic data, any of which may lead to incorrect results.

No Warranty: This Data is provided to you "as is," and you agree to use it at your own
risk. ALK and its licensors (and their licensors and suppliers) make no guarantees,
representations or warranties of any kind, express or implied, arising by law or otherwise,
including but not limited to, content, quality, accuracy, completeness, effectiveness,
reliability, fitness for a particular purpose, usefulness, use or results to be obtained from
this Data, or that the Data or server will be uninterrupted or error-free.

Disclaimer of Warranty: ALK AND ITS LICENSORS (INCLUDING THEIR
LICENSORS AND SUPPLIERS) DISCLAIM ANY WARRANTIES, EXPRESS OR
IMPLIED, OF QUALITY, PERFORMANCE, MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT. Some States, Territories and
Countries do not allow certain warranty exclusions, so to that extent the above exclusion
may not apply to you.

Disclaimer of Liability: ALK AND ITS LICENSORS (INCLUDING THEIR
LICENSORS AND SUPPLIERS) SHALL NOT BE LIABLE TO YOU: IN RESPECT OF
ANY CLAIM, DEMAND OR ACTION, IRRESPECTIVE OF THE NATURE OF THE
CAUSE OF THE CLAIM, DEMAND OR ACTION ALLEGING ANY LOSS, INJURY
OR DAMAGES, DIRECT OR INDIRECT, WHICH MAY RESULT FROM THE USE
OR POSSESSION OF THE INFORMATION; OR FOR ANY LOSS OF PROFIT,
REVENUE, CONTRACTS OR SAVINGS, OR ANY OTHER DIRECT, INDIRECT,
INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
YOUR USE OF OR INABILITY TO USE THIS INFORMATION, ANY DEFECT IN
THE INFORMATION, OR THE BREACH OF THESE TERMS OR CONDITIONS,
WHETHER IN AN ACTION IN CONTRACT OR TORT OR BASED ON A
WARRANTY, EVEN IF ALK OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. Some States, Territories and Countries do not
allow certain liability exclusions or damages limitations, so to that extent the above may
not apply to you.

 PC*MILER Product End-User License Agreement xi

Export Control: You agree not to export from anywhere any part of the Data provided to
you or any direct product thereof except in compliance with, and with all licenses and
approvals required under, applicable export laws, rules and regulations.

Entire Agreement: These terms and conditions constitute the entire agreement between
ALK (and its licensors, including their licensors and suppliers) and you pertaining to the
subject matter hereof, and supersedes in their entirety any and all written or oral agreements
previously existing between us with respect to such subject matter.

Governing Law: The above terms and conditions shall be governed by the laws of Illinois,
without giving effect to (i) its conflict of laws provisions, or (ii) the United Nations
Convention for Contracts for the International Sale of Goods, which is explicitly
excluded. You agree to submit to the jurisdiction of the Illinois for any and all disputes,
claims and actions arising from or in connection with the Data provided to you hereunder.

Government End Users: If the Data is being acquired by or on behalf of the United States
Government or any other entity seeking or applying rights similar to those customarily
claimed by the United States government, the Data is a "commercial item" as that term is
defined at 48 C.F.R ("FAR") 2.101, is licensed in accordance with End-User Terms and
each copy of Data delivered or otherwise furnished shall be marked and embedded as
appropriate with the following "Notice of Use" and shall be treated in accordance with such
Notice.

Notice of Use
Contractor (Manufacturer/Supplier) Name: HERE
Contractor (Manufacturer/Supplier) Address: 425 W. Randolph Street, Chicago, Illinois
60606
This Data is a commercial item as defined in FAR 2.101 and is subject to these End User
Terms under which this Data was provided
© 2017 HERE. All rights reserved

If the Contracting Officer, federal government agency, or any federal official refuses to use
the legend provided herein, the Contracting Officer, federal government agency, or any
federal official must notify HERE prior to seeking additional or alternative rights in the
Data.

FOR ALK DATA

This end user license agreement applies to ALK Data included in PC*MILER if any, as
well as to ALK data you obtain separately that is formatted for use with your Software
("ALK EULA").

The data ("Data") is provided for your personal, internal use only and not for resale. It is
protected by copyright, and is subject to the following terms and conditions which are
agreed to by you, on the one hand, and ALK Technologies, Inc. ("ALK") and its licensors
(including their licensors and suppliers) on the other hand.

© 2017 ALK. All rights reserved.

 PC*MILER|Connect User’s Guide xii

Personal Use Only: "You" means you as an End-user or as a "Company" on behalf of its
End-Users which are subject to either a Non-Disclosure Agreement as employees or a
License Agreement that contains the same restrictions as herein as a Value Added
Reseller. Also as used in this EULA "personal use" can also be understood in more general
terms as for a Company's use. You agree to use this Data together with PC*MILER for the
solely personal, non-commercial purposes for which you were licensed, and not for service
bureau, time-sharing or other similar purposes. Accordingly, but subject to the restrictions
set forth in the following paragraphs, you may copy this Data only as necessary for your
personal use to (i) view it, and (ii) save it, provided that you do not remove any copyright
notices that appear and do not modify the Data in any way. You agree not to otherwise
reproduce copy, modify, decompile, disassemble or reverse engineer any portion of this
Data, and may not transfer or distribute it in any form, for any purpose, except to the extent
permitted by mandatory laws.

Restrictions: Except where you have been specifically licensed to do so by ALK in the
case of an integrated solution bundled or intended for use with specific smartphones,
similar mobile communication device(s) or personal navigation device(s), and without
limiting the preceding paragraph, you may not use this Data (a) with any products, systems,
or applications installed or otherwise connected to or in communication with vehicles,
capable of vehicle navigation, positioning, dispatch, real time route guidance, fleet
management or similar applications; or (b) with or in communication with any positioning
devices or any mobile or wireless-connected electronic or computer devices, including
without limitation cellular phones, smartphones, palmtop and handheld computers, pagers,
and personal digital assistants or PDAs.

Warning: The Data may contain inaccurate, untimely or incomplete information due to the
passage of time, changing circumstances, sources used and the nature of collecting
comprehensive geographic data, any of which may lead to incorrect results. The Data is
based on official highway maps, the Code of Federal Regulations, and information
provided by state governments and other licensors. It is provided without a warranty of
any kind. The user assumes full responsibility for any delay, expense, loss or damage that
may occur as a result of use of the Data.

No Warranty: This Data is provided to you "as is," and you agree to use it at your own
risk. ALK and its licensors (and their licensors and suppliers) make no guarantees,
representations or warranties of any kind, express or implied, arising by law or otherwise,
including but not limited to, content, quality, accuracy, completeness, effectiveness,
reliability, fitness for a particular purpose, usefulness, use or results to be obtained from
this Data, or that the Data or server will be uninterrupted or error-free.

Disclaimer of Warranty: ALK AND ITS LICENSORS (INCLUDING THEIR
LICENSORS AND SUPPLIERS) DISCLAIM ANY WARRANTIES, EXPRESS OR
IMPLIED, OF QUALITY, PERFORMANCE, MERCHANTABILITY, AND/OR
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Some States,
Territories and Countries do not allow certain warranty exclusions, so to that extent the
above exclusion may not apply to you.

 PC*MILER Product End-User License Agreement xiii

Disclaimer of Liability: ALK AND ITS LICENSORS (INCLUDING THEIR
LICENSORS AND SUPPLIERS) SHALL NOT BE LIABLE TO YOU: IN RESPECT OF
ANY CLAIM, DEMAND OR ACTION, IRRESPECTIVE OF THE NATURE OF THE
CAUSE OF THE CLAIM, DEMAND OR ACTION ALLEGING ANY LOSS, INJURY
OR DAMAGES, DIRECT OR INDIRECT, WHICH MAY RESULT FROM THE USE
OR POSSESSION OF THE INFORMATION; OR FOR ANY LOSS OF PROFIT,
REVENUE, CONTRACTS OR SAVINGS, OR ANY OTHER DIRECT, INDIRECT,
INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
YOUR USE OF OR INABILITY TO USE THIS INFORMATION, ANY DEFECT IN
THE INFORMATION, OR THE BREACH OF THESE TERMS OR CONDITIONS,
WHETHER IN AN ACTION IN CONTRACT OR TORT OR BASED ON A
WARRANTY, EVEN IF ALK OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. Some States, Territories and Countries do not
allow certain liability exclusions or damages limitations, so to that extent the above may
not apply to you.

Export Control: You agree not to export from anywhere any part of the Data provided to
you or any direct product thereof except in compliance with and with all licenses and
approvals required under, applicable export laws, rules and regulations.

Entire Agreement: These terms and conditions constitute the entire agreement between
ALK (and its licensors, including their licensors and suppliers) and you pertaining to the
subject matter hereof, and supersedes in their entirety any and all written or oral agreements
previously existing between us with respect to such subject matter.

Governing Law: The above terms and conditions shall be governed by the laws of the State
of New Jersey. The courts of the State of New Jersey shall have exclusive jurisdiction to
settle any and all disputes, claims and actions arising from or in connection with the Data
provided to you hereunder. You agree to submit to such jurisdiction.

FOR CANADA TERRITORY DATA

The following provisions apply to data for Canada provided by Canada Post Corporation
as the owner of the copyright, and Statistics Canada as the owner of all intellectual property
rights, in the same data (collectively "Canada Post Data").

Neither Canada Post Data or Statistics Canada, shall be liable: (i) in respect of any claim,
demand or action, irrespective of the nature or causes of the claim whatsoever, alleging
any loss, injury or damages, direct or indirect, which may result from End User's use or
possession of Canada Post Data; or (ii) in any way for loss of revenues or contracts, or any
other consequential loss of any kind resulting from any defect in such Canada Post Data.

End User agrees to indemnify and save harmless Canada Post and Statistics Canada and its
officers, employees, agents from all claims alleging loss, costs, expenses, damages or
injuries (including injuries resulting in death) arising out of End User's possession or use
of Canada Data.

 PC*MILER|Connect User’s Guide 1

Introduction

Welcome to PC*MILER|Connect! By purchasing a PC*MILER product, you
have made a cost-effective investment in the transportation and logistics industry’s
leading routing, mileage, and mapping software solution. Accuracy, reliability, and
stability have positioned PC*MILER as the technology used by over 22,000 motor
carriers, shippers, and logistics companies around the world. The U.S. Department
of Defense (DoD), the General Services Administration (GSA), and the Federal
Motor Carrier Safety Association (FMCSA) also rely on PC*MILER as their
worldwide distance standard. If you’re seeking to maximize your revenues while
utilizing the safest, most cost-effective routing for your vehicles, PC*MILER will
do it for you.

PC*MILER|Connect offers transportation professionals and software developers
access to PC*MILER features from other applications. Client applications are able
to retrieve PC*MILER distances, driving times, state-by-state mileage breakdowns,
and detailed driving instructions. PC*MILER|Connect allows easy integration of
PC*MILER distances into popular software, such as Microsoft Access and
Microsoft Excel, and custom applications built with various software development
environments, such as Visual Basic, Microsoft Visual C++, Delphi, C++ Builder,
etc.

PC*MILER|Connect provides a COM Interface to enhance integration with OLE-
enabled development environments such as Visual Basic, Visual C++, Delphi, and
Active Server Pages (ASP). Also included is a Java Native Interface (JNI) layer to
simplify the integration with Java-based software applications. The interface
provides the ability to generate reports in HTML format and gives you the ability
to build dynamic web sites for use in any browser environments.

PC*MILER|Connect calculates distances for an origin-destination pair of locations
with intermediate stop-off points. Locations can be city/state abbreviations, ZIP
codes, latitude/longitude pairs, SPLCs (available as an add-on data module),
Canadian Postal Codes (available as an add-on data module), or custom names
created in or imported into PC*MILER. In addition, PC*MILER|Connect can
generate hub routes and can optimize a sequence of stops. The PC*MILER|Connect
Dynamic Link Library (DLL) is designed to fulfill all the routing and mileage
reporting needs of custom truck and shipper application development.

1 C
ha

pt
er

 PC*MILER|Connect User’s Guide 2

PC*MILER|Connect provides the following major features:

• PC*MILER Database: ALK Technologies’ proprietary PC*MILER
North American database is the industry standard for point-to-point
mileage. 2017 ZIP codes are included. Add-on modules are also available
for Canadian Postal Codes and SPLCs. Internationally, the
PC*MILER|Worldwide database includes over 1 million named locations
and over 6.6 million kilometers of truck-specific road segments.
PC*MILER|Worldwide generates exact U.S. Department of Defense
distances for freight and household goods billing.

• Support for Practical, Shortest, State + National Network, Toll
Discouraged, and Air routing. Connect gives users these five basic route
types to choose from, plus various route type combinations and options.

• Standard report formats. You can insert PC*MILER|Connect reports as
tab delimited text directly into your applications. These reports include the
detailed driving instructions, state by state distance breakdown, and
summary distance report. These reports are the same ones you use in
PC*MILER.

• Direct accessibility from other applications. All these features are
accessible from any development environment capable of calling a DLL. In
addition, most features are accessible from Microsoft Access and Microsoft
Excel.

1.1 Requirements
PC*MILER|Connect requires a base installation of PC*MILER,
PC*MILER|Streets or PC*MILER|Worldwide. For a complete list of PC*MILER
platforms and requirements, see the PC*MILER User’s Guide. (To access the
User’s Guide, see section 1.4 below.)

Additionally, the Connect application requires:

• 13 MB additional hard disk space
• A development system. Interface definitions for Borland C++, MSVC++,

and Visual Basic MS Access are currently supported. Sample Win32 VB
.Net and C# that run under .Net 3.5 framework and higher.

• A copy of Microsoft Excel 97 or higher to use PC*MILER|Spreadsheets.

NOTE on FUEL PRICE UPDATES: To have fuel prices from major providers
updated regularly, ensure that the PC*MILER user interface is running on your
PC*MILER|Connect server.

 Chapter 1: Introduction 3

NOTE on SYSTEM RESTARTS: It is a best practice to restart your system that
integrates with PC*MILER|Connect on a regular basis such as once per week. This
is due to the fact that the Windows operating system resources such as memory,
disk space and TCP/IP ports may be in use by PC*MILER and other vendor
applications. A system reboot ensures that these resources are returned to the
Windows OS and reduces the chance that PC*MILER will slow down due to lack
of operating system resources. ALK recommends rebooting at least once per week,
when users are least affected by the system outage.

1.2 Installing PC*MILER|Connect
PC*MILER|Connect is a PC*MILER add-on product that can be installed when
you install PC*MILER or at a later time. To install Connect along with
PC*MILER, you simply make sure that “PC*MILER|Connect” is checked on the
list of PC*MILER components when you are prompted during the installation
process.

If you are adding the Connect module at a later time, see the PDF User’s Guide that
was included with the PC*MILER installation (refer to Adding New PC*MILER
Products in Chapter 2). To access the User’s Guide, see section 1.4 below.

1.3 Technical Support
If you have any questions about PC*MILER|Connect or problems with the software
that cannot be resolved using this User’s Guide or the PC*MILER User’s Guide
(see section 1.4 below), visit us at www.pcmiler.com/support for online support,
product training resources, and much more. You can also contact us in the
following ways:

Phone: 609.683.0220, ext 2
Fax: 609.252.8196
Email: pcmsupport@alk.com
Web Site: www.pcmiler.com
Hours: 8:00am – 5:00pm EST, Mon-Fri

When calling, ask for “PC*MILER Technical Support”. Please be sure to have
your PC*MILER|Connect Product Key Code, version number, Windows version
number, and hardware configuration information (manufacturer, speed, and
monitor type) available before your call. Please include this information in your
message if you are contacting us by email.

http://www.pcmiler.com/support
mailto:pcmsupport@alk.com
http://www.pcmiler.com/

 PC*MILER|Connect User’s Guide 4

1.4 Accessing User Guides for PC*MILER Products

NOTE: You must have Adobe Acrobat Reader on your computer to properly view
a PC*MILER product’s user guide. If you do not have this program installed
already, a free copy can be downloaded from www.adobe.com.

To make Adobe Reader your default reader, from within the Adobe Reader
application select the Edit menu > Preferences > General and click Select Default
PDF Handler. Select Adobe Reader from the drop-down, and click Apply then
OK to close the Preferences dialog.

To view the user guide for any PC*MILER product without first opening an
application, click the Windows Start button > All Programs (or the equivalent on
your system) > PCMILER 31 > and select one of the user guides.

To search for a keyword or phrase in a user guide, use Adobe Reader’s Find option
in the Edit menu or on the tool bar.

All user guides can also be accessed at www.pcmiler.com/support

1.5 Licensing
The PC*MILER|Connect installation increases your licenses of the PC*MILER
database to two concurrent accesses. This means that you can run a copy of
PC*MILER or PC*MILER|Worldwide together with one PC*MILER|Connect
client application at the same time. Within each client application, the
PC*MILER|Connect server engine allows up to eight open routes at a time.

You can connect more client applications by purchasing additional database
licenses from ALK. If you plan to connect many users to a network version of the
PC*MILER database, ALK has attractive pricing for LAN versions.

1.6 Applications That Use PC*MILER|Connect
Purchasing PC*MILER|Connect does not entitle you to redistribute any portions of
this product. You may NOT redistribute ALK’s highway database, source code,
interface definitions, Excel Add-In, or the PC*MILER|Connect DLL. Please read
the PC*MILER licensing agreement for details.

Your clients must purchase additional versions of the PC*MILER database and
PC*MILER|Connect directly from ALK. ALK Technologies Sales can be reached
by telephone at1-800-377-MILE.

http://www.pcmiler.com/support

 Chapter 1: Introduction 5

1.7 About This Manual
This manual describes the interface to PC*MILER|Connect, via the
PCMSRV32.DLL, and how to use it in your own application. It assumes a working
knowledge of programming concepts.

NOTE: For a description of the PC*MILER|Spreadsheets Excel interface, see the
separate User’s Guide for that product that came with your purchase of
PC*MILER|Connect (go to the Windows Start menu > All Programs (or the
equivalent in your version of Windows) > PCMILER 31 > Spreadsheets User’s
Guide).

1.8 What’s New in PC*MILER|Connect Version 31?

• ENHANCED!... (PC*MILER|Worldwide or DTOD data license required) The
following country codes have been updated in the database:

Country Code Type Previous New
Congo, Democratic Republic (Kinshasa) ISO2 CG CD
Congo, Republic of the (Brazzaville) ISO2 CD CG
Timor-Leste GENC3 TMP TLS

• NEW!... Internet-enabled features of PC*MILER can now connect with IPv6
addresses. (Requires a license for PC*MILER|TCP/IP) For companies that have
migrated to an IPv6 data communications schema for added speed and security,
PC*MILER can now connect with IPv6 network addresses.

• ENHANCED!... New PCMSLookup option 3 for address lookups. A new
option 3 for the function PCMSLookup() has been added to enable address lookup
in conjunction with PCMSGetFmtMatch4(). This new functionality can be used in
place of the deprecated function PCMSLatLongToAddress(). For example:

PCMSLookup (trip, “32.921474,-97.225534”, 3)
and
PCMSFmtMatch4() (used as described in section 3.7)

NOTE for MVS Users: PCMSGetFmtMatch4() is not currently available for the
PC*MILER Multi-Version Switch.

• ENHANCED!... Improved log files include product key codes. PC*MILER
interface products generate log files that are sometimes used by support staff when
customer support is necessary. In this release, the log files include the key codes

 PC*MILER|Connect User’s Guide 6

for your installed products. This information can inform support staff of the specific
versions of the software installed, which can be helpful in troubleshooting.

• ENHANCED!... Improved sample code is compatible with 64-bit API libraries.
The sample code included with PC*MILER|Connect has been updated and verified
to be compatible with 64-bit libraries.

NOTE: There are no new function deprecations for Version 31. For a list of
function deprecations going back to Version 26, see Appendix H.

NOTE on ALK’s DEPRECATION POLICY: If the “deprecated” status is
applied to an API, it indicates that the API should be avoided when interfacing to
PC*MILER. ALK generally deprecates an API when a better alternative has been
developed, in order to encourage users to work with the newer functionality.

Although deprecated API’s may remain in the software, their use can produce
warning messages and/or non-optimal results. Features are deprecated, rather than
immediately removed, in order to provide backward compatibility and give
developers who have been using the feature time to bring their code into compliance
with the new standards. A deprecated API may be removed from the product in the
future.
If a deprecated API is used in your interface to PC*MILER, when logging is turned
on, a message will indicate where interface changes are suggested to bring your
code into compliance as well as for best performance.

 PC*MILER|Connect User’s Guide 7

Overview and Basic Concepts

This chapter explains the concepts needed to use PC*MILER|Connect.

2.1 PC*MILER|Connect Server Engine and Trips
PC*MILER|Connect has two basic components: engine and trips.

The Connect engine does the license enforcement, trip management, distance
calculation, and report generation. The engine is used by opening a connection to
it and keeping the connection open for the life of the program. You must close the
engine before your application exits or Windows won’t free the resources used by
PC*MILER|Connect, nor will it unlock the current license. You won't be able to
rerun your application if you don’t close down the engine when your
application exits.

NOTE on SYSTEM RESTARTS: It is a best practice to restart your system that
integrates with PC*MILER|Connect on a regular basis such as once per week. This
is due to the fact that the Windows operating system resources such as memory,
disk space and TCP/IP ports may be in use by PC*MILER and other vendor
applications. A system reboot ensures that these resources are returned to the
Windows OS and reduces the chance that PC*MILER will slow down due to lack
of operating system resources. ALK recommends rebooting at least once per week,
when users are least affected by the system outage.

Trips are collections of stops, options and reports. You must build a trip to
access any Connect features other than simple distance calculations (see
below). A trip is created by asking the Connect engine for a new trip ID, then
setting the trip up with a list of stops and new options. You can then calculate the
trip’s route and distance, and extract any of the trip’s PC*MILER reports.

IMPORTANT NOTE: Running more than about 300 trips (more or less,
depending on how much memory each trip uses) simultaneously is not
recommended.

2 C
ha

pt
er

 PC*MILER|Connect User’s Guide 8

2.2 Steps for Simple Distance Calculations
(For functions, see section 3.3, Simple Distance Calculation.)

The PC*MILER|Connect engine includes simplified functions for distance
calculation between an origin and a destination without any stops. These functions
do not allow access to any Connect trip options or features, but they do make it easy
to calculate miles without managing trips from your application. The steps for this
process, which is the simplest use of the PCMSRV32 DLL, are:

1. Start the engine.
2. Calculate the miles from point A to point B.
3. Repeat with as many origin-destination pairs as you want.
4. Shut down the engine.

2.3 Sample Sequence for Building a Trip
(For more details see section 3.2, Building a Trip, and other function descriptions
in Chapter 3.)

NOTES: It’s not recommended to call Open/Close Server after every lookup
(section 3.1). ALK recommends using the trip-based API’s because they are fast
and thread safe. All the newer API’s such as RouteMatrix and RouteSync are trip-
based.

To manage multiple trips and use PC*MILER route options and features for each trip,
you must build a trip using a sequence like the one below or as described in Chapter
4, PC*MILER|RouteMatrix API’s and Chapter 5, PC*MILER|Connect RouteSync
Functions.

For a simple trip you could, for example, execute the following sequence to
calculate mileage for a trip with six stops, optimize the stop sequence to get the
most efficient route, and optionally create a RouteSync object to send to a driver
using ALK’s CoPilot Truck on a mobile device:

1. Open a connection to the engine (PCMSOpenServer).

2. Create a new trip with PCMSNewTripWithRegion(server, “NA”) and
reuse if possible for future trips. If PC*MILER|Worldwide is installed
you can create trips with another region. NOTE: Trips are thread safe so
multiple threads can be created but do not share the trips across multiple
threads. TIP: Create a number of trips and threads that match the number
of CPUs. Thus and 8-CPU system should have 8 threads and one unique
trip per thread. More threads than CPUs will provide only a small
percentage of additional throughput.

 Chapter 2: Overview and Basic Concepts 9

3. Set the route type to use the PRACTICAL routing calculation
(PCMSSetCalcTypeEx).

4. Set the unit of distance to MILES (PCMSSetMiles).

5. Clear stops from previous trip – use whenever multiple trips are generated
(PCMSClearStops).

6. Validate stop names (PCMSLookUp with option 5 – see section 3.7 for
details).

7. Optionally use PCMSGetFmtMatch4 to get lat/longs with 6-digit
precision.

8. Add a batch of stops to the trip’s route (PCMSAddStop) .

9. Set the resequence mode to keep the final destination of the route the same
(PCMSSetResequence).

10. (Optional) Optimize the stop sequence (PCMSOptimize).

11. Calculate a route and distances (PCMSCalculate) .

12. (Optional) Create a RouteSync object to send to a vehicle with
(PCMSGetManagedRouteMsgBytes) .

13. Delete the trip (PCMSDeleteTrip).

14. Close the engine down (PCMSCloseServer).

2.4 Tips for Using the API’s

• It is now recommended that you use trip-based API’s (e.g.
PCMSNewTripWithRegion) instead of CalcDistance API’s.

• Make sure your interface isn’t calling deprecated API’s – you can turn
logging on to check this. See Appendix H for a list of deprecated API’s.

• Use the decimal degree lat/long format with 6 digits after the decimal for
improved routing accuracy, for example 45.606856 N, 122.766545 W.

• Use PCMSGetFmtMatch4 to get decimal degrees when validating
addresses.

• The above tips for lat/longs are a requirement for any product that is
identifying a location for navigation in CoPilot Truck through Workflow or
RouteSync.

 PC*MILER|Connect User’s Guide 10

2.5 Stop Formats
The stops you add to a trip are simply places on the PC*MILER road network.
Place names may be any of the following:

• City/state pairs or 5-digit ZIP/postal codes; for example, ‘Princeton, NJ’
or ‘08540’ – see section 2.7 below on entering non-U.S. postal codes

• 3-digit US ZIP codes, must include state abbreviation; e.g. ‘123, NY’
• Latitude/longitude points; for example, ‘0401750N,0742131W’ – see

section 2.8
• A street address and city/state – see section 2.6 (requires PC*MILER|Streets)
• A street address and latitude/longitude point – see section 2.8 (requires

PC*MILER|Streets)
• A SPLC; for example, ‘SPLC202230250’
• Canadian Postal Codes; for example, ‘K7L 4E7’
• Custom names created in PC*MILER

PC*MILER|Connect has functions for validating place names and matching partial
names to places on the PC*MILER network. For example, you can use
PC*MILER|Connect to return a list of place names that match ‘PRI*, NJ’ or all
ZIP codes that start with ‘085*’. When adding a stop to a trip, PC*MILER|Connect
chooses the first match if many matching cities exist. If you add an incomplete stop
name like ‘PRINCE, NJ’, PC*MILER|Connect will use ‘Princessville, NJ’, the
first in its list of valid matches.

Please note that place names MUST have commas between city and state. For
example, ‘PRINCETON,NJ’ and ‘PRINCETON, NJ’ are valid, while
‘PRINCETON NJ’ is not. There is no limit on the number of characters a city
name can have.

2.6 Specifying Street Addresses
You must have PC*MILER|Streets data installed to access street addresses in the
U.S. and Canada, and Streets routing must be enabled using the
PCMSSetRouteLevel API or the PCMSERVE.INI (see Appendix I). To specify a
street address, use a semicolon (;) after the state/country abbreviation or postal
code, then add the address. Examples: New York, NY;100 Broadway or 08540;
20 Nassau Street. For address validation, see section 3.8.

If PC*MILER|Worldwide is installed and Streets routing is enabled, address data
is also available for Brazil, Europe and/or Oceania. In these cases, be sure the
correct region and dataset are activated – see sections 3.10 and 3.11.

Beginning in Version 28, you can also combine street addresses with
latitude/longitude points. The lat/long is added after the address, preceded by a
semicolon. See section 2.8.

 Chapter 2: Overview and Basic Concepts 11

2.7 Specifying a Non-U.S. Country
If PC*MILER|Worldwide data is installed, you may specify a country outside the
United States using its FIPS two-letter abbreviation (for example, ‘Paris, FR’),
ISO2, ISO3, GENC2 or GENC3 code, or a postal code (for example, ‘46001 sp’ –
see important note below on non-U.S. postal codes).

See section 3.12, Country Code Format Options on how to specify a non-FIPS
country code; and section 3.15, State/Country Lists for information about validating
a country abbreviation. See Appendix D for postal code formats in various
countries.

The correct region must be set (see section 3.10, Setting and Getting the Region).
The default region in PC*MILER|Connect is North America unless it is changed.

Canadian and Mexican locations are specified using a province or estado
abbreviation after the city name.

IMPORTANT NOTE: When you are using European postal codes as stops, you
need to enter a country abbreviation to avoid being routed to the wrong country in
cases where the same postal code exists in more than one country. Enter the postal
code, a comma or space, and the correct two-letter country abbreviation; e.g.
“46001 sp” or “46001,sp” for Valencia, Spain.

Outside of the USA and Canada, a postal code is often shared by a group of nearby
towns, villages or neighborhoods, each with its own latitude/longitude. In order to
route to a particular town, you must include the town name along with the postal
code and country. For example "22021 Visgnola, IT" instead of "22021, IT". If
you do not include the town name, PC*MILER will route you to the default town
for that postal code.

In the United Kingdom (Great Britain), extended postal codes have 6 or 7
alphanumeric characters (with a space before the last 3 characters) and identify a
particular block of a particular street, whereas non-extended postal codes have 4 or
5 alphanumeric characters (with a space before the last character) and identify a
town, village, or neighborhood. You must include the space in a UK postal code
when you pass it to PC*MILER. All versions of PC*MILER|Worldwide accept
non-extended postal codes as input, while only versions 24.1 and later accept
extended postal codes as input. In order for your interface to be compatible with
all versions of PC*MILER, you must strip the last two characters from an extended
UK postal code prior to passing it as input to PC*MILER. For example, for the
extended postal code "WC1A 2RP", in order to enter this postal code in version
23.1 or earlier you must strip off the last 2 characters, i.e. "Wc1A 2".

In the Republic of Ireland, the Dublin metropolitan area has postal codes of 1 or 2
digits, while the remainder of the country does not have postal codes. In order to
pass a single-digit postal code to PC*MILER, you must include the city name. For

 PC*MILER|Connect User’s Guide 12

example, "1 Dublin, EI" (if you are using the default FIPS-2 country codes, or "1
Dublin, IE" if you are using ISo-2 country codes).

In countries that have spaces or dashes in numeric postal codes, you do not have to
include the space or dash in your input to PC*MILER, but the result that
PC*MILER returns will include the space or dash. For example if you enter either
"02879, PL" or "02-879, PL" PC*MILER will return "02-879 Warsaw, PL", and if
you enter either "11121, SW" or "11 121, SW" PC*MILER will return "11 121
Stockholm, SW".

In some countries, the place name(s) associated with a postal code in a major city
will be the name(s) of the neighborhood(s) and not the name of the city. For
example, "104-0061,JA" will return "104-0061 Ginza, JA", not "104-0061 Tokyo,
JA" (the Ginza neighborhood is the main shopping district in central Tokyo).

For major cities, PC*MILER's database includes place names in English in addition
to the local language(s); for example, "Munich, GM" in addition to "Munchen,
GM", and "Brussels, BE" in addition to "Brussel, BE" and "Bruxelles, BE".

In PC*MILER 24.1 and later, place names are coded in UTF-8, and for some
countries PC*MILER includes place names in both local, non-Latin characters as
well as transliterated into Latin characters. If you pass a postal code to PC*MILER
and the place name that PC*MILER returns is unprintable, you probably need to
adjust your program to account for UTF-8 coding.

2.8 Entering Latitude/Longitude Points As Stops
(Also see section 2.4, Tips for Using the API’s.)

PC*MILER|Connect enables you to enter latitude/longitude points as stops on a
route. These points can be entered in degrees minutes seconds direction format
(e.g. 0401750N,0742131W) or decimal degrees (e.g. 40.123N,100.333W).

Degrees-minutes-seconds format:
In degrees-minutes-seconds format the latitude and longitude are each 8 character
strings in the following format:

Characters 1-3 specify the degrees (be sure to include
leading zero if required)

Characters 4-5 specify the minutes
Characters 6-7 specify the seconds
Character 8 is either ‘N’, ‘n’, ‘W’, or ‘w’ with N’s for

latitude and W’s for longitude
Latitude and longitude must be separated by a comma WITHOUT A SPACE. In
general the format for a point is:

dddmmssN,dddmmssW

 Chapter 2: Overview and Basic Concepts 13

Decimal degrees format:
In decimal degrees format, latitude and longitude are strings of up to 8 characters
representing a decimal number with up to 3 decimal places. No leading zeros are
required. The decimal point counts as one of the characters. Latitude and longitude
must be separated by a comma WITHOUT A SPACE. In general the format for a
point is:

ddd.dddN,ddd.dddW

Converting between formats:
To convert from degrees-minutes-seconds to decimal degrees use the following
formula:

dddmmssN → ddd + mm/60 + ss/3600

Examples:
Here is an example of an actual lat/long near Kendall Park NJ in both formats:

0402515N,0743340W
40.421N,74.561W

Beginning in Version 28, you can also use latitude/longitude points combined with
street addresses for more precise geocoding and directions. The lat/long is added
before the address, followed by a semicolon. An example is:

40.211670N,74.703480W;1200 Kuser Road

This new functionality will geocode the lat/long to the nearest point on the
particular street in the address, rather than to the nearest street in the direction of
travel, as would be the case for a lat/long by itself. In the example above that uses
an address in Trenton, NJ, the route will access its destination via Kuser Road rather
than turning off Interstate I-295 as it would if a lat/long were used without an
address. If the lat/long is more than .5 miles from the street in the address, an error
message will be returned.

NOTE: This functionality will only work if your third party integration software
recognizes the street address with lat/long format.

 PC*MILER|Connect User’s Guide 14

2.9 Reports
There are five different reports generated by the PC*MILER|Connect server
engine. For users of PC*MILER the reports will be familiar – they are exactly the
same as the on-screen version of the same reports in PC*MILER.
PC*MILER|Connect allows easy, line by line extraction of reports in tab delimited
format. Each line can then be added to a spreadsheet or grid control from your
application. See section 3.25 for details. The available reports are:

• Detailed Route Report. Shows detailed directions from the trip’s origin to

its destination.
• Drivers Report. This report generates detailed driving instructions

specifically for drivers.
• Distance Report. Shows the distance summary for each leg of the trip (as in

the route window in the PC*MILER user interface).
• State/Country Report. Appended to the mileage report, it displays the state

by state and country breakdown of the trip.
• Road Type Report. Breaks down the generated distances by PC*MILER

road type.

2.10 Trip Options
Each trip has options that affect the way the PC*MILER|Connect server engine
routes trucks over the highway network and the appearance of reports. For example,
the engine can reorder all your stops in the optimal order, or it can treat the first
stop as the hub and calculate the miles from the hub to each stop.

Following are some basic options that are modifiable via function calls:

• Route Type. The engine uses six different algorithms to calculate a route:
the most Practical route to travel, the Shortest route, a route that avoids tolls,
a route that favors National Network highways and 53 Foot Trailer routing,
a Personally Owned Vehicle (POV) automobile route, or an “Air” route that
travels in a straight line. (See your PC*MILER User's Guide for a detailed
description of the first four route types; the Air route is unique to
PC*MILER|Connect.)

NOTE: Toll-Discouraged and State + National Network routes are based
on Practical rather than Shortest miles. The PCMSCalcTypeEx function
(used to calculate route type combinations) uses Shortest miles by default.

• Units. Distances can be reported either in miles or kilometers. By default,
distances are returned in tenths of miles/kilometers. To get distances in
hundredths or thousandths, either use PCMSSetNumMilesDecimals (see
section 3.18), change this setting in the PC*MILER user interface, or add a

 Chapter 2: Overview and Basic Concepts 15

line to the [Options] section of the PCMSERVE.INI file – see Appendix I.
Times are always reported in minutes, except for the PCMSRouteMatrix()
and PCMSGetSegment() functions which return times in thousandths of
hours.

• Toll Calculations (available only if the PC*MILER|Tolls add-on module is
installed with PC*MILER). Accurate, up-to-date U.S. and Canadian tolls
for each leg of a trip can be calculated, with or without discount programs
applied.

• Highway Only vs. Streets Mode. If PC*MILER|Streets is licensed and
installed, routes can be generated to street addresses using local streets. By
default, PC*MILER|Connect generates Highway Only routing. Local
street routing can be enabled using the PCMSSetRouteLevel() API or by
editing the PCMSERVE.INI file (see Appendix I).

• Optimized Routes. The engine can re-order stops into the optimal driving
order. Users can choose whether the destination stop is also fixed
(resequencing only the stop-offs), or whether to resequence all stops except
the origin. Warning: Using this option may slow your computer down while
PC*MILER|Connect optimizes all your stops.

• Borders. Some trips near international borders may cross over a border and
then turn back to the originating country. You can force
PC*MILER|Connect to keep the route within the original country by using
closed borders.

• Vehicle type. The vehicle type can be set through the use of route profiles
created in PC*MILER – see the PC*MILER User’s Guide and section 3.20,
Using Route Profiles, in this user guide.

• Hub mode. The engine can also treat the trip’s origin as a hub and generate
distances to all the other stops in the list. This is useful for solving
distribution problems with warehouses.

• State order. State summary reports list all states/countries through which
the route travels in alphabetical or driving order.

 PC*MILER|Connect User’s Guide 16

2.11 Query for Version Number and Network Connections
The function PCMSAbout() returns the PC*MILER|Connect version number, the
current number of active PC*MILER Product users on the network, the maximum
number of simultaneous users that are allowed with the current license, and the data
version.

int PCMSAbout (const char FAR *which, char FAR
*buffer, int bufSize);

The function is described below.

char szProdName[BUFLEN], szProdVer[BUFLEN],
szCurrUsers[BUFLEN], szMaxUsers[BUFLEN],
szDataVersion[BUFLEN];

When using keyword ProductName in the sample below, the PCMSAbout()
function should return the product name, such as “PC*MILER|Connect”, and the
length of the buffer stored in the return code ret.

ret = PCMSAbout("ProductName", szProdName, BUFLEN);

When using keyword ProductVersion in the sample below, the PCMSAbout()
function should return the product version, such as 25, and the length of the buffer
stored in the return code ret.

ret = PCMSAbout("ProductVersion", szProdVer, BUFLEN);

When using keyword CurrUsers in the sample below, the PCMSAbout()
function should return the number of active current users, such as 7, and the length
of the buffer stored in the return code ret.

ret = PCMSAbout("CurrUsers", szCurrUsers, BUFLEN);

When using keyword MaxUsers in the sample below, the PCMSAbout() function
should return the maximum number of PC*MILER Product user licenses
purchased, such as 20, and the length of the buffer stored in the return code ret.

ret = PCMSAbout("MaxUsers", szMaxUsers, BUFLEN);

When using keyword DataVersion in the sample below, the PCMSAbout()
function should return the data version which includes the data product name and
version number, and the length of the buffer stored in the return code ret. For
example, if the data’s product name is “GRD_ALK.NA.2015.2” and the data
version is 11.24.11.3, the function would return these in a single string like this:
GRD_ALK.NA.2015.2.11.24.11.3 along with the buffer length.

ret = PCMSAbout("DataVersion", szDataVersion, BUFLEN);

 PC*MILER|Connect User’s Guide 17

Using the
PC*MILER|Connect API’s

The PC*MILER|Connect DLL is named PCMSRV32.DLL or
PCMSRV64.DLL. This chapter explains how to create applications that use the
DLL. It also details how to start up and shut down the server engine, create and
configure trips, employ trip options, calculate routes, and extract report data.

The instructions in this chapter should apply to any language that can call DLLs
using the Pascal calling convention. Caveats and language-specific instructions for
Visual Basic, ‘C’, and Microsoft Access are in Chapters 6-8. Also please have a
look at the sample code included with PC*MILER|Connect. These files can be
found in the Connect folder of your PC*MILER installation – usually C:\ALK
Technologies\PCMILER31\Connect or <server>\PCMILER31\Connect for client
installs.

Examples for calling LoadLibrary at run-time to load PC*MILER|Connect and
then calling GetProcAddress to retrieve the entry points for the functions exported
from PC*MILER|Connect are included with the installation.

3.1 Initialization and Cleanup
Before your application can use any API functions, it must connect to and initialize
PC*MILER|Connect. After it finishes, it must shut down the server connection.
You must close the server before your application exits or Windows won’t free the
resources used by the DLL, nor will it unlock the current license. But do not
repeatedly open and close the server. Open the server on startup and close the
server on exit. The server should be opened only once per application instance.

The function PCMSOpenServer() will initialize PC*MILER|Connect, check your
PC*MILER licenses, load the PC*MILER highway database, and ready the engine
for routing calculations. PCMSOpenServer() must be called before any other
functions in PC*MILER|Connect, with the exception of error handling code. See
section 3.41, PC*MILER|Connect Error Handling in this chapter for details.

The prototype for the function PCMSOpenServer() is as follows:

PCMServerID PCMSOpenServer(HINSTANCE hAppInst, HWND

hWnd);

3 C
ha

pt
er

 PC*MILER|Connect User’s Guide 18

Parameters:
hAppInst - The instance handle of the calling application. PC*MILER|Connect
uses this if it needs to load resources from the calling application. This parameter
is currently not used and may be 0.

hWnd - A handle to the window that will be used as a parent for error messages
and other dialogs. This parameter is currently not used and may be 0.

Return Values:
Returns a valid server ID, of type PCMServerID (integer value 10000).

int PCMSCloseServer(PCMServerID server);

PCMSCloseServer() must be the last PC*MILER|Connect function called when
you’re finished using the engine. PCMSCloseServer() will destroy any remaining
trips that you haven’t deleted with PCMSDeleteTrip(), and unload the PC*MILER
highway database. After calling PCMSCloseServer(), you must call
PCMSOpenServer() again to reinitialize PC*MILER|Connect before calling any
other functions.

CAUTION: Calling PCMSCloseServer() then PCMSOpenServer() in quick
succession should not be done – it will diminish performance and can affect
reliability.

Parameters:
PCMServerID server - The server ID of the PC*MILER|Connect connection from
PCMSOpenServer().

Return Values:
1 on success, 0 on failure.

Here is the way your application should start and stop the Connect server engine:

void UsePCMILER()
{
 PCMServerID server;
 /* Pass neither instance handle, nor parent
window*/
 server = PCMSOpenServer(0, 0);

 /* Do other processing here. */
 /* Use the server: calculate trips, etc.... */

 /* Shut down the server */
 PCMSCloseServer(server);
}

 Chapter 3: Using the PC*MILER|Connect API’s 19

For efficiency, you should start the server engine when your application initializes
and shut down the engine when your application exits, rather than every time you
want to compute a route. Also, you should only need to open one connection per
application. Once the engine is initialized, you can then calculate distances, create
trips, and generate reports.

3.2 Building a Trip

NOTE: See Chapter 2, Overview and Basic Concepts, especially section 2.3 and
section 2.10, for basic information about trips. Users who need to calculate an N X
N trip matrix efficiently, taking advantage of parallel processing on multi-core
CPUs, should refer to Chapter 4, PC*MILER|RouteMatrix API’s for an alternate
method of building trips.

IMPORTANT NOTE: Running more than about 300 trips (more or less,
depending on how much memory each trip uses) simultaneously is not
recommended.

HINT: To optimize the performance of your application, you can reuse a single
trip created in the beginning of the program throughout its execution.

Building a trip enables users to access the many outstanding trip features that
PC*MILER|Connect offers. These include various routing options, geocoding,
stop optimization, and report generation. The PC*MILER|Connect engine can be
used to build many complex trips with multiple stops and various options. For
example, you could generate two trips from New York to San Diego using different
route options and then compare them. See section 3.17 for available route options.

To generate a trip with options, you must first ask the engine for a new trip. A Trip
identifier is defined as an integer:

trip PCMSNewTrip (PCMServerID serverID);

Parameters:
PCMServerID serverID - The server ID of the PC*MILER|Connect connection
from PCMSOpenServer().

Return Values:
Returns handle to a new trip. It returns 0 if the server ID is invalid.

void PCMSDeleteTrip(Trip tripID);

 PC*MILER|Connect User’s Guide 20

When finished with the trip, you must call PCMSDeleteTrip() to clean up the
trip’s memory. Unless you are reusing the trip with PCMSClearStops(), allowing
expired or unused trips to soak up memory can result in reliability issues.
Unpredictable results and application crashes can occur if trips are not deleted over
time.

3.3 Simple Distance Calculation
The simplest way to use the Connect server engine once it is initialized is to
calculate distances between city pairs. For example, calculating the miles between
“Chicago, IL” and “New York, NY”.

Before calculating distances, it is strongly recommended that you validate
your city names and ZIP codes using the function PCMSLookup() with option
5, which returns extended geocoding error codes when an exact match to your input
is not found – see section 3.7, Validating City Names.

Once the trip is created using PCMSNewTrip() (see section 3.2 above), you can
do simple calculations with a trip or more complex ones using various route and
report options. Here are the main functions for simple distance calculation:

int PCMSNewTrip (ServerID)

long PCMSCalcTrip(Trip tripID, char *orig, char *dest);

long PCMSCalcTrip2(Trip tripID, char *orig, char *dest,
int easyMatch); (deprecated in Version 29)

int PCMSAddStop (Trip tripID, const char *stop);

long PCMSCalculate(Trip tripID);

void PCMSClearStops (Trip tripID);

void PCMSDeleteTrip(Trip tripID);

long PCMSCalcTrip(Trip tripID, char *orig, char *dest);

PCMSCalcTrip() returns the distance between orig and dest by calculating the
route using the trip’s current routing type. By default, the distance is returned as
tenths of miles and your application should divide the result by 10 to obtain true
floating point distance. (To have distances returned in hundredths or thousandths,
either use the PCMSSetNumMilesDecimals() function (section 3.18), edit the
precision setting in the PC*MILER user interface, or edit the PCMSERVE.INI file
– see Appendix I for a description of the order of precedence for these editing
options.)

Since PCMSCalcTrip() actually adds the orig and dest to the trip as stops, you
can use the trip again after modifying some options. The origin and destination

 Chapter 3: Using the PC*MILER|Connect API’s 21

locations are geocoded using the default database match at a confidence level of 1
or 2. For a description of PC*MILER confidence levels, see PCMSLookup() in
section 3.6, and section 3.7.

PCMSCalcTrip() can be called repeatedly with new origins and destinations,
without calling PCMSClearStops() or PCMSDeleteTrip() / PCMSNewTrip().

Parameters:
Trip tripID – The trip identifier.

char *orig – Origin of the trip. An acceptable PC*MILER location format must
be used – see sections 2.5 – 2.8.

char *dest – Origin of the trip. An acceptable PC*MILER location format must
be used – see sections 2.5 – 2.8.

Return Values:
Returns the trip distance as tenths of miles (see function description above for more
information on distance precision). Returns error code on failure, see Appendix B.

int PCMSAddStop(Trip tripID, const char *stop);

PCMSAddStop() is used first to add stops to a trip, before calling
PCMSCalculate(). Stops are geocoded using the default database match at a
confidence level of 1 or 2. There is a minimum of two stops. The maximum
number of stops is only limited by physical resources. See section 3.6 for more on
this function.

NOTE: Creating trips with hundreds of stops is not recommended.

Parameters:
Trip tripID – The trip identifier.

const char *stop – A location. An acceptable PC*MILER location format must
be used – see sections 2.5 – 2.8.

Return Values:
Returns 1 on success. Returns -1 on failure.

long PCMSCalculate(Trip tripID);

After adding stops using PCMSAddStop(), call PCMSCalculate() which computes
the distance for the current trip using the trip’s current routing type. By default, the
distance is returned as tenths of miles and your application should divide the result
by 10 to obtain true floating point distance. To have distances returned in

 PC*MILER|Connect User’s Guide 22

hundredths or thousandths, either use the PCMSSetNumMilesDecimals() function
(see section 3.18), edit the precision setting in the PC*MILER user interface, or
edit the PCMSERVE.INI file – see Appendix I for a description of the order of
precedence.

Parameters:
Trip tripID – The trip identifier.

Return Values:
Returns distance as tenths of miles. Returns -1 if there are not enough stops or the
trip contains invalid stops.

long PCMSGetDuration(Trip tripID);

The above function returns the trip’s duration in minutes.

void PCMSClearStops(Trip tripID);

For the next trip you can call PCMSClearStops() and reuse the original tripID or
call PCMSDeleteTrip() then PCMSNewTrip() again (see section 3.2).

NOTE: When finished with a trip be sure to call PCMSDeleteTrip(). Each tripID
has system resources assigned to it and care must be taken not to drain those
resources by building up a stash of old unused trip.

The following example shows how to calculate the distances between Chicago, IL
and New York, NY using three different routing criteria.

void RunRoutes(PCMServerID server)
 {
 long minutes;
 long hours;
 long miles;
 int matches;

 /* Note: Server must already be initialized. */
 Trip trip = PCMSNewTrip(server);

 /* Calculate the distance using default calculation */
 miles = PCMSCalcTrip(trip, “Chicago, IL”,
 “New York, NY”);
 printf(“Practical: %f\n”, miles / 10.0);

 /* Calculate the distance using shortest algorithm */
 PCMSSetCalcType(trip, CALC_SHORTEST);
 miles = PCMSCalcTrip(trip, “Chicago, IL”,

 Chapter 3: Using the PC*MILER|Connect API’s 23

 “New York, NY”);
 printf(“Shortest: %f\n”, miles / 10.0);

 /* Calculate the distance avoiding toll roads */
 PCMSSetCalcType(trip, CALC_AVOIDTOLL);
 miles = PCMSCalcTrip(trip, “Chicago, IL”,
 “New York, NY”);
 minutes = PCMSGetDuration(trip);
 printf(“Toll Avoid: %f miles\n”, miles / 10.0);

 /* Show the duration in hour:minute notation */
 hours = minutes / 60;
 minutes = minutes % 60;
 printf(“Duration: %ld:%ld\n”, hours, minutes);

 /* Check the spelling of a city and ZIP */
 matches = PCMSLookup(trip, “San Fran, CA”, 5);
 printf(“Matching city names: %d\n”, matches);
 }

Another example is below. Each of the functions which modify a trip’s options or
stop list are described in more detail in following sections.

void Test_trip(PCMServerID server)
{
 Trip shortTrip;
 float distance;

 /* Create a new trip */
 shortTrip = PCMSNewTrip(server);

 /* ...Do some error handling... */

 /* Run a route calculation */
 distance = PCMSCalcTrip(shortTrip, "Princeton, NJ",
"Chicago, IL");
 printf ("Practical route in miles: %f\n", distance);

/* Calculate in kilometers */
 PCMSSetKilometers(shortTrip);
 distance = PCMSCalcTrip(shortTrip, "Princeton, NJ",
"Chicago, IL");
 printf ("Practical route in kilometers: %f\n",
 distance);

 /* Change to SHORTEST routing, rerun. */
 PCMSSetCalcType(shortTrip, CALC_SHORTEST);
 distance = PCMSCalculate(shortTrip);
 printf ("Shortest route in kilometers: %f\n",

 PC*MILER|Connect User’s Guide 24

 distance);

 /* Free up the trip before returning!!! */
 PCMSDeleteTrip(shortTrip);
}

3.4 Getting Toll Costs
If the PC*MILER|Tolls add-on module is installed with PC*MILER, there are five
PC*MILER|Connect functions that support toll calculations. These functions and
their interfaces in C language are described below. A sixth function,
PCMSSetVehicleConfig(), enables toll cost calculation with custom vehicle
dimensions and number of axles taken into account (see section 3.4.1 below).

Once the toll and (if used) vehicle dimensions information has been passed in, the
routing results can be retrieved using the standard PCMSGetRpt() and
PCMSGetRptLine() API’s.

void PCMSSetTollMode(Trip trip, int mode)

After a trip is created and before requesting a toll amount or report, use the above
function to indicate whether no tolls are calculated, tolls are to be calculated on an
all-cash basis, or discount programs are to be used in toll calculations. If discount
programs are used (e.g. EZPass, SunPass, etc.) they must first be selected in the
Application Settings dialog in the PC*MILER user interface (see NOTE below).

NOTE: By default, out of the box, toll discount programs are enabled. To check
this setting, run the PC*MILER user interface (alk.pcmiler.exe), select the red File
menu > Application Settings > Tolls and make sure that the desired discount
program(s) are checked. You must also make sure the use of discount programs is
enabled in the default Route Profile: select the Routes tab > Profiles > Default
(double click) > Reporting Preferences and make sure Use Toll Discount
Programs is checked.

Parameters:
Trip trip – The standard trip ID declared as long.

mode – Determines which toll mode will be used to calculate tolls:
 0 - no toll information is calculated
 1 - cash toll amount
 2 - discount toll amount

int PCMSGetToll(Trip trip)

 Chapter 3: Using the PC*MILER|Connect API’s 25

Use the above function to request the total toll charges for the trip.

Parameters:
Trip trip – The standard trip ID declared as long.

Return Values:
Returns total toll charges in cents.
-1 indicates an invalid trip ID.

int PCMSNumTollDiscounts(PCMServerID serv)

Returns the number of available toll discount programs (for example, EZPass,
FasTrak, etc.). Only discount programs that are selected in the File menu >
Application Settings > Tolls tab in the PC*MILER user interface are available, and
discount programs must be enabled (see NOTE above). Note that it includes cash
mode, which technically is not a discount.

Parameters:
PCMServerID serv – The PC*MILER server ID.

Return Values:
Returns the number of available discount programs.
-1 indicates an invalid server ID.

int PCMSGetTollDiscountName(PCMServerID serv, int idx,

char *buffer, int bufSize)

Retrieves the available toll discount program name by index value. Returns the
actual number of bytes in buffer.

Parameters:
PCMServerID serv – The PC*MILER server ID.

int idx – The index value (integer) of the discount program.

char *buffer – The discount toll name (e.g. “EZPASS”) is stored in this buffer.

int bufSize – The number of bytes in the buffer.

Return Values:
Returns a discount program name, for example “EZPass”.
-1 indicates an invalid server ID or index value.

long PCMSGetTollBreakdown(Trip trip, int discProgram,

char *state)

 PC*MILER|Connect User’s Guide 26

The above function gets the toll amount attributable to a particular discount
program. Note that if the Toll Mode is set to 1 (all cash) using
PCMSSetTollMode(), a value of zero will be reported for all programs except
cash.

Parameters:
Trip trip – The standard trip ID declared as long.

int discProgram – The index value (integer) of the discount program for which the
toll amount will be returned. If this value is zero (0) it refers to cash.

char *state – If a state or jurisdiction abbreviation is specified, the returned toll
amount is in that state only. If state is an empty string, all states are included.

Return Values:
Returns a toll amount in cents.
-1 indicates an invalid trip ID or index value.

The following sample code demonstrates the use of most of the toll functions:

void Test_tolls(PCMServerID server)
{
 Trip trip1;
 int I, numPrograms;
 float miles;
 float TollsTotal, programTolls;
 char programName[20];

 /* create a new trip */
 trip1 = PCMSNewTrip(server);

 /* run a route */
 miles = PCMSCalcTrip(trip1, "New York, NY",
 "Washington, DC") / 10.0;

printf("Total mileage = %.1f miles\n", miles);

/* get total tolls on all-cash basis */
 PCMSSetTollMode(trip1, TOLL_CASH);
 TollsTotal = PCMSGetToll(trip1) / 100.0;
 printf("All-cash tolls = $%.2f\n", TollsTotal);

/* get total tolls using discount programs */
 PCMSSetTollMode(trip1, TOLL_DISCOUNT);
 TollsTotal = PCMSGetToll(trip1) / 100.0;
 printf("Discounted tolls = $%.2f\n", TollsTotal);

/* get breakdown of tolls by cash part (i=0) and
 each discount program */
 PCMSSetTollMode(trip1, TOLL_DISCOUNT);

 Chapter 3: Using the PC*MILER|Connect API’s 27

 numPrograms = PCMSNumTollDiscounts(server);
 for (i=0; i<numPrograms; ++i)
 {
 PCMSGetTollDiscountName(server, i, programName, 20);
 programTolls = PCMSGetTollBreakdown(trip1, I, “ “)/

100.0;
 printf("%s Tolls = $%.2f\n", programName,

programTolls);
}

/* delete the trip */

3.4.1 Toll Calculation With Custom Vehicle Dimensions

(Installation of PC*MILER|Tolls required) Either of the two functions described
below – PCMSSetVehicleConfig() and PCMSSetRoutingProfileName() – can
be used for calculating toll costs using custom vehicle dimensions.

Jurisdictions in the U.S. and Canada that have toll roads class their toll rates either
by vehicle weight or by a vehicle’s number of axles. Beginning in PC*MILER
Version 22, setting the vehicle’s dimensions enables toll cost reporting based on
vehicle weight and number of axles. The default values (i.e. if custom vehicle
dimensions are not set) are based on a typical Class 8 vehicle with a weight of
80,000 lbs./36,287 kg. and 5 axles.

The available toll rates by axle are from 2 (two axle dual rear wheel vehicles only)
up to 14 axles, including multi-trailer rates. For toll rates categorized by weight,
each toll road authority publishes its own definition of weight classes, and
PC*MILER|Tolls categorizes and reports these toll rates based on the published
weight category and range provided.

For those who are new to the arena of toll cost reporting, the jurisdictions that
charge toll costs by weight and those that charge by axle are identified below. This
information is important to know if you intend to use PC*MILER to generate toll
costs that are customized by weight and axle.

• Jurisdictions Charging Tolls by Vehicle Weight: MI, NJ, ON, PA

• Jurisdictions Charging Tolls by Axle: AL, AK, BC, CA, CO, DE, FL, GA,
IN, IL, KS, LA, MA, ME, MD, MI, MN, MO, NB, NC, NE, NH, NJ, NS, NY,
OH, OK, OR, PA, PEI, QC, RI, SC, TX, UT, VA, VT, WA, and WV

IMPORTANT NOTE: Twin trailers with 7 or more axles are not allowed on the
Massachusetts Turnpike east of Exit 14. If you enter 7 or more axles and indicate
that this is a long combination (multiple trailer) vehicle, then PC*MILER will
return a $0 toll rate for that section, without a warning.

 PC*MILER|Connect User’s Guide 28

int PCMSSetVehicleConfig (Trip tripID, int units, int
overPerm, double height, double width, double length, long
weight, int axle, int lcv)

Use the function PCMSSetVehicleConfig() to generate a route and receive toll
cost information based on a truck’s height, width, length, weight and axle
configuration. This configuration information is checked against the threshold at
which a truck becomes “oversized” and appropriate routing is generated.

Additionally, PC*MILER now supports calculation of routes and toll costs for
smaller vehicles (vans, pickup trucks, SUVs, automobiles, etc. that are classed less
than 9,000 lbs./4,082 kgs.).

All parameters are required for this function, but only the weight, axle number, and
lcv (multiple trailer) parameters affect toll cost reporting.

Parameters:
Trip tripID – A Trip type parameter with the trip ID.

units – FALSE corresponds to English and TRUE to Metric.

overPerm – Should be set to TRUE if the vehicle weight exceeds 80,000 lbs./
36,287 kgs. (assumes that an oversize permit has been obtained).

height – The truck height in inches or meters depending upon units; maximum =
162 inches/4.11 meters, no minimum.

width – The truck width in inches or meters depending upon units; maximum =
102 inches/2.59 meters, no minimum.

length – The truck length in feet or meters depending upon units; maximum = 80
feet/24.38 meters, no minimum.

weight – The truck weight in pounds or kilos depending upon units; maximum =
132,000 lbs./ 59,874 kgs., no minimum.

axle – The number of axles on the truck, used only for toll cost calculation (does
not affect routing); note that 2 axle includes two axle dual rear wheel vehicles
only; any value can be entered, typical values are 2 (indicating an automobile) or
5 (indicating a truck).

lcv – Identifies a long combination (multiple trailer) vehicle if set to TRUE.

Return Values:
Returns 0 on success. -1 indicates that one or all of the length, width, height, or
weight values are outside of the acceptable range and none of the vehicle
configuration values will be set for this trip.

 Chapter 3: Using the PC*MILER|Connect API’s 29

Here is an example of how this API might be used when running routes:

Trip trip = PCMSNewTrip(server);
// Drivers starts their trip with a trailer in
// in a specific configuration.
ret = PCMSSetVehicleConfig(trip, 0, 0, 120, 96, 48,
80000, 5, 0);
ret = PCMSCalcTrip(trip, "19104", "51001");

// At their first stop they change trailers so we
//update the vehicle configuration for the next leg
ret = PCMSSetVehicleConfig(trip, 0, 0, 120, 102, 53,
100000, 5, 0);
ret = PCMSCalcTrip(trip, "51001", "91001");

NOTE: Trucks weighing more than 80,000 lbs. require a permit in most U.S.
jurisdictions. The overPerm parameter does not affect routing, it only serves as
a reminder that a permit may be required for the vehicle dimensions entered. The
default value is FALSE.

NOTE: The New York State Thruway lists separate toll rates for “5-axle 48'
Trailer” and “5-axle 53' Trailer” vehicle types. When generating a route,
PC*MILER|Tolls now reports “5-axle 48' Trailer” toll costs as the default unless
users actively set the trailer length to “53” in the PCMSSetVehicleConfig API.
(Note that changing the routing option to “National” will not impact toll cost
calculations.) In PC*MILER|Connect, when using the function
PCMSSetVehicleConfig, identifying vehicle dimensions for length as either “48”
or “53” will report the corresponding toll cost.

int PCMSSetRoutingProfileName(Trip trip, const char
*profileName)

For a particular trip, the above function turns on the specified Route Profile created
in PC*MILER.

Parameters:
trip – The trip to which this route profile will be applied.

const char *profileName – The name assigned to the route profile when it was
created in PC*MILER.

Return Values:
Returns -1 on error. “Profile not found” error message will write to the log file if
input name is not a valid route profile name.

 PC*MILER|Connect User’s Guide 30

3.5 Currency Conversion

void PCMSSetExchRate(Trip trip, long convRate);

The function PCMSSetExchRate() enables accurate toll cost calculation in
Canadian dollars. It affects generated toll costs only. Users who are working with
PC*MILER|Connect without the PC*MILER user interface can use this function
to change the default exchange rate between U.S. and Canadian dollars.

Parameters:
Trip trip – The standard trip ID declared as long.

convRate – This is the currency rate FROM U.S. dollars TO Canadian dollars,
declared as long. In the example below, the conversion rate from U.S. dollars to
Canadian dollars is set at $99.29:

PCMSSetExchRate(trip, 9929);

3.6 Managing Stops
PC*MILER|Connect can calculate routes with many stops. When the client
application adds stops to a trip, PC*MILER|Connect tries to geocode stop names
to the PC*MILER highway database.

The following functions, described below, are used to manage a trip’s list of stops:

int PCMSAddStop();

int PCMSAddStop2(); (deprecated in Version 29 – use PCMSLookUp with option
5 to get extended geocoding error codes if your stop does not have an exact match)

int PCMSDeleteStop();

int PCMSGetStop();

int PCMSGetStopType();

int PCMSNumStops();

void PCMSClearStops();

int PCMSAddStop(Trip tripID, const char *stop);

PCMSAddStop() adds a stop to the trip’s stop list before calling
PCMSCalculate(). The maximum number of stops is only limited by physical
resources. It geocodes the given location by returning the default match in the

 Chapter 3: Using the PC*MILER|Connect API’s 31

database at a confidence level of 1 or 2. PC*MILER confidence levels indicate the
accuracy of the data matching for each record as follows:

Level 1: Exact An exact match was made. Trust is 95% or greater AND if

address is outside the range listed in the database, the top
match is within 100 address units of input address*; OR for
any other match level if there are multiple matches they are
all within .1 air miles of each other.
* For example, “100 Main Street” was input and the best match in the
database is “150-250 Main Street”.

Level 2: Fair Fair match: Trust is 85% or greater AND if address is
outside the range listed in the database, the top match is
within 500 address units of input address*; OR for any
other match level if there are multiple matches they are all
within .5 air miles of each other.
* For example, “100 Main Street” was input and the best match in the
database is “450-550 Main Street”.

Level 3: Uncertain Uncertain match: Trust is 50% or greater.

Level 4: Failed Failed match: Trust is below 50%.

IMPORTANT: If the stop is invalid, it was not added to the trip’s list. This means
that the trip will recalculate, but the distance and the route will not include the
invalid stop! For stop validation and to modify the way a location is geocoded,
refer to section 3.7, Validating City Names.

Parameters:
Trip tripID – The trip identifier.

const char *stop – A location. An acceptable PC*MILER location format must
be used – see sections 2.5 – 2.8.

Return Values:
Returns 1 on success. Returns an error code if the given location is invalid – see
sections 2.5 – 2.8 for valid stop formats, and Appendix B for error codes. For a
more detailed description of the geocoding failure, use PCMSLookup() with
option 5.

int PCMSDeleteStop(Trip trip, int which);

int PCMSGetStop(Trip tripID, int which, char *buffer,
int bufSize);

PCMSDeleteStop() deletes a specified stop from this trip. PCMSGetStop() will
put a stop name into the supplied buffer. Use which to index into the list of stops.
Stop number 0 is the origin. The resulting string will be a NULL terminated string.

 PC*MILER|Connect User’s Guide 32

There is no limit to the length of the place name (we recommend using at least
128 bytes). If bufSize is less than the actual stop length, then bufSize - 1 characters
will be copied into buffer. PCMSGetStop() returns the number of characters in
the actual name so you can check if your buffer is too small.

int PCMSGetStopType(Trip trip, int which, int *type);

PCMSGetStopType() is used to determine what type of stop was added to the trip,
making it easier to know how to parse the returned results. It returns the type of
each stop in a trip. Pass an index as to which stop you want the stop type for in the
trip.

Parameters:
Trip trip – The trip identifier.

int which – The stop number for which the type is requested.

int *type – 1 if there is a street address or latlong, 0 if not.

Return Values:
Returns 0 if there is no local street address, or 1 if there is an address or latlong.

For example:

Trip trip = PCMSNewTrip(server);
PCMSAddStop(trip, "12345");
PCMSAddStop(trip, "18974;1174 nassau road");
void DumpStops(Trip trip)
{
 char buf[BUFLEN];
 std::cout << " Dumping stops..." << std::endl;
 int nStops = PCMSNumStops(trip);
 for (int iStop = 0; iStop < nStops; ++iStop)
{
int type = -1;
PCMSGetStop(trip, iStop, buf, BUFLEN);
PCMSGetStopType(trip, iStop, &type);
std::cout << " " << iStop << ") " << buf << " ("
<< type << ")" << std::endl;

 }
}

This code produces the following report:

 0) 18974 Warminster, PA; 1174 Nassau Road (1)
 1) 12345 General Electric, NY, Schenectady (0)

 Chapter 3: Using the PC*MILER|Connect API’s 33

int PCMSNumStops(Trip tripID);

int PCMSClearStops(Trip tripID);

PCMSNumStops() returns the total number of stops currently in the trip’s stop list,
including origin and destination. PCMSClearStops() removes all stops from the
stop list.

The following example shows how to add some stops and to check a partial match
after adding it:

void AddStop(Trip tripID)
{
 int matches;
 int bytes;
 char buffer[40];

 /* Clear out all the stops */
 PCMSClearStops();
 /* Add one stop and error check it carefully */
 matches = PCMSAddStop(tripID, “Princeton, NJ”);
 if (1 < matches)
 printf(“Found %d matching cities!\n”, matches);
 else if (1 == matches)
 printf(“Found only one\n”);
 else if (0 == matches)
 printf(“Couldn’t find anything\n”);
 else
 printf(“Oops! Caused an error\n”);

 /* Add some more stops simply */
 PCMSAddStop(tripID, “Chicago, IL”);
 PCMSAddStop(tripID, “San Diego, CA”);

 /* Show the trip’s stops as geocoded */
 for (i = 0; i < PCMSNumStops(tripID); i++)
 {
 bytes = PCMSGetRptLine(tripID, RPT_MILEAGE, i,

 buffer, 40);
if (0 < bytes)

printf (“%s\n”, buffer);
else

printf (“Stop %d is invalid\n”, i);
}

}

 PC*MILER|Connect User’s Guide 34

3.7 Validating City Names
You may want to spell check and validate city names before committing the engine
to run the route. There are several functions you can use to look up city/state pairs,
postal and ZIP codes, and addresses (PC*MILER|Streets street-level data must be
installed for addresses):

int PCMSCheckPlaceName(); (deprecated in Version 29, use PCMSLookUp

with option 2 for results that match what PCMSCheckPlaceName would
return, or option 5 – see option descriptions below)

int PCMSLookup();

int PCMSGetMatch();

int PCMSGetFmtMatch();

int PCMSGetFmtMatch2();

int PCMSGetFmtMatch3();

int PCMSGetFmtMatch4();

int PCMSNumMatches();

Suggested use of the above functions for city validation is as follows:

1. Use PCMSLookup().

int PCMSLookup(Trip tripID, const char *placeName,
int Option);

Returns database matches. Creates a list of matching cities and returns how
many match your input. You can then check each item in the list yourself for a
matching name, or pop up the list in your own list box.

Parameters:
Trip tripID – The trip ID.

const char *placeName – A place name in any format acceptable to
PC*MILER. Input may contain an asterisk (e.g. “PRI*, NJ”) or be in the form
of latitude/longitude points or any custom place name created in PC*MILER.
Matches will also be returned if your input is either a fragment or matches
multiple cities with the same name (e.g. a city with many different ZIP codes).

int Option – The input value affects the output returned as follows:

 Chapter 3: Using the PC*MILER|Connect API’s 35

Option = 0 – Returns the number of matches found (of any confidence
level), or 0 if no matches are found. This option is provided for the
benefit of users who are implementing pick list functionality, who
would then call PCMSGetMatch() to get each item for their pick list
(see Step 2 below).). The first match in the list (match index 0) will be
the default or best match. Lists for U.S. cities will start with the
default or central city ZIP code, then continue with a numeric sort of
the cities’ remaining ZIP codes, with matches that have no ZIP codes
sorted alphabetically at the bottom. With the optional Canadian Postal
Code data addon, the first match will be the city and province code
alone then an alphanumeric sort of the postal codes for that city.

Option = 1 – Returns one exact match (confidence level 1), or an error if
no exact match is found. Can return a pick list.

Option = 3 – Use this option for addresses. Returns one exact match

(confidence level 1) or an error if no exact match is found.

Option = 2 – Returns one exact match, or one fair match (confidence level
2) if no exact match is found; or an error if no exact or fair matches are
found. A fair match is a close match to the user’s input address,
subject to a minimum trust percentage of 85%, an out-of-range test,
and a multiple matches rule. The trust percentage measures how
closely the text of the match resembles the text of the user’s input.
The out-of-range test checks that the match’s address range is within
500 address units of the user’s input address number. The multiple
matches rule checks that alternative exact or fair matches, if any, are
within .5 miles of one another.

Option = 5 – Returns one exact match (confidence level 1), or extended
error code if no exact match is found. See Appendix B, Constants and
Error Codes, for descriptions of extended error codes. Can return a
pick list.

IMPORTANT NOTE: The INI settings and API that pertain to Mexican
postal codes (documented in section 3.12) affect options 1 and 5 but do not have
any effect when option 0 or 2 is passed.

Example inputs are below.

int nMatches = PCMSLookup(tripID, “Princeton,NJ;140”,
5); //should return 1060
int nMatches = PCMSLookup(tripID, “LA”, 2); //should
return 0
int nMatches = PCMSLookup(tripID, “Princeton,NP”,
2); //should return 0

 PC*MILER|Connect User’s Guide 36

int nMatches = PCMSLookup(tripID, “19128;9501 HENRY
AVE”, 5); //should return 1050
int nMatches = PCMSLookup(tripID, “08540Princeton,NJ;
1000 Herronxtown road”, 5); //should return 1040
int nMatches = PCMSLookup(tripID, “08540Princeton,NJ;
1000 Herrontown road”, 2); //should return 1
int nMatches = PCMSLookup(tripID, “32.921474,-
97.225534”, 3); //should return 1

2. Once you’ve added stops that have at least one match in the database to your

trip, use PCMSGetMatch() or one of the four PCMSGetFmtMatch()
functions to retrieve each matching place name.

int PCMSGetMatch(Trip tripID, int index, char
*buffer, int bufLen);

Use the above function to pass the index of the match wanted and a buffer to
store the name in. The name stored in the buffer should be the name passed to
PCMSAddStop() (see section 3.6, Managing Stops above). There is no limit
to the length of the place name (we recommend using at least 128 bytes).
Returns the number of characters in the actual place name so you can check if
your buffer is too small.

int PCMSGetFmtMatch(Trip trip, int which, char FAR

*buffer, int bufSize, int zipLen, int cityLen,
int countyLen);

The above function will format the length of the place name before returning it.
zipLen is the length of the ZIP field, cityLen is the length of the city field, and
countyLen is the length of the county field. The place name will be returned
in the format (zipLen)_(cityLen)_(2-character state abbreviation),_(countyLen),
where the underscores represent spaces, for example:

07403 Bloomingdale NJ, Passaic

int PCMSGetFmtMatch2 (Trip trip, int which, char FAR

*addrBuf, int addrLen, char FAR *cityBuf, int
cityLen, char FAR *stateBuf, int stateLen, char
FAR *zipBuf, int zipLen, char FAR *countyBuf, int
countyLen);

 Chapter 3: Using the PC*MILER|Connect API’s 37

The above function will also format the length of the place name before
returning it. It contains a different string for each piece of information
regarding address, city, state, ZIP code, and county.

int PCMSGetFmtMatch3 (Trip trip, int which, char

*addrBuf, int addrLen, char *cityBuf, int
cityLen, char *stateBuf, int stateLen, char
*zipBuf, int zipLen, char *countyBuf, int
countyLen, char *timezoneBuf, int timezoneLen,
bool &isDST);

The above function returns the time zone in GMT offset format and whether it
is in Daylight Savings Time, in addition to the other information described
above.

int PCMSGetFmtMatch4 (Trip trip, int which, char

*addrBuf, int addrLen, char *cityBuf, int
cityLen, char *stateBuf, int stateLen, char
*zipBuf, int zipLen, char *countyBuf, int
countyLen, double *latitude, double *longitude);

The above function returns the decimal latitude and longitude in addition to the
other information described above.

NOTE: If the length of a particular input exceeds the parameters of its
corresponding field, the return will be truncated; for example, if you pass 4 for
zipLen and look up Bloomingdale, NJ, you’ll get back ‘0740’ rather than
‘07403’.

3. Use PCMSNumMatches() to get the number of matches of the last call to

PCMSLookup().

int PCMSNumMatches(Trip trip);

To look up a city and print the list of all matching cities, use code like this:

char buffer[255];

* Lookup all cities that match *\

matches = PCMSLookup(trip, "PRI*, NJ", 0);
printf ("%d matching cities to 'PRI*, NJ'\n", matches);

 PC*MILER|Connect User’s Guide 38

* Show all the matching cities. Note: You could use
variable ‘matches’ below instead, since PCMSNumMatches()
== matches.*\

for (i = 0; i < PCMSNumMatches(trip); i++)
{
 PCMSGetMatch(trip, i, buffer, 25);
 printf ("[%s]\n", buffer);
}

3.8 Validating Street Addresses
To validate place names with addresses, follow the steps outlined above for
validating cities. Addresses must be separated from place names by a semi-colon
in your input file; for example: 08540 Princeton, NJ;457 North Harrison St.

To look up synonyms for street type abbreviations that PC*MILER will accept (for
example, “Blvd” for “Boulevard”), see the synonym.typ file located in the
PC*MILER installation folder (usually in C:\ALK Technologies\PCMILER31\
Data\Info).

3.9 Functions for Converting Special Characters
The functions below convert strings containing diacriticals to usable characters.

NOTE: These functions work only for special characters, PC*MILER does not
handle Japanese or Chinese characters. To work with these characters, use
PCMSLookUp() – see the provided sample code within the PC*MILER
installation folder, usually:
 C:\ALK Technologies\PCMILER31\Connect\Csharp\TestConnectLookUp.cs

int PCMSAnglicize(char *outBuf, char *inBuf);

PCMSAnglicize() is used for working with diacriticals, it returns the stop name
string without special characters. For example, if geocoding the address “Charny,
QC; 1021 École” fails, the user needs to consider calling this function first. For a
global setting, see PCMSSetAnglicize() below.

Parameters:
char *outBuf – The anglicized output string.

char *inBuf – The input string that incudes special characters.

Return Values: The return is 0 for success, no other error codes are returned.

 Chapter 3: Using the PC*MILER|Connect API’s 39

int PCMSSetAnglicize(PCMServerID server, bool onOff);

PCMSSetAnglicize() is a global setting that turns the conversion of diacriticals
on/off. Some environments and compilers do not have a simple way to convert
UTF-8 to a string that is usable and/or properly displays on a screen or printer.
Using this function can alleviate problems and crashes that are caused by strings
that are unusable due to the inclusion of diacriticals.

This setting can also be controlled in the PCMSERVE.INI (see Appendix I):

[ConnectOptions]
Anglicize=true

PC*MILER|Connect functions that are affected by PCMSSetAnglize() are:

PCMSGetFmtMatch PCMSGetRpt
PCMSGetFmtMatch2 PCMSGetRptLine
PCMSGetFmtMatch3 PCMSGetStop
PCMSGetFmtMatch4 PCMSLatLongToCity
PCMSGetLocAtMiles PCMSGetHTMLRpt
PCMSGetLocAtMinutes PCMSLatLongToAddress
PCMSGetMatch

Parameters:
PCMServerID server – The PC*MILER server ID.

bool onOff – Set to True to turn on special character conversion, the default value
is False.

Return Values: The return is 0 for success, returns -1 on error.

3.10 Setting and Getting the Region
The default region in PC*MILER|Connect is North America. If
PC*MILER|Worldwide is licensed and installed, you can use the
PCMSNewTripWithRegion() function to create a new PC*MILER trip within a
specified world region, and the PCMSGetDefaultRegion() function to view the
default region.

IMPORTANT NOTE: In a multi-threaded environment we have NOT advised
using the PCMSSetDefaultRegion() function (deprecated in Version 29), as it sets
the region globally and may cause failures if you have threads running routes in
other regions. See below for alternate ways to change the default region.

 PC*MILER|Connect User’s Guide 40

Ways to change the default region include editing the PCMSERVE.INI file (see
Appendix I) or changing the region setting in the PC*MILER user interface. If
using the PCMSERVE.INI to change a setting, the change will only take effect after
the application is restarted. Changes made in the INI file take precedence over
settings in the PC*MILER UI.

trip PCMSNewTripWithRegion(PCMServerID serv, const

char *regionID);

Parameters:
PCMServerID serv – The PC*MILER server ID.

const char *regionID – Available regions with PC*MILER|Worldwide are:
Africa, Asia, Europe, ME (Middle East), NA (North America), Oceania, and SA
(South America).

Return Values: Returns a valid trip ID for subsequent references in other API’s
such as PCMSAddStop() and PCMSCalculate().

int PCMSGetDefaultRegion (short bufSize, char FAR
*regionID);

Parameters:
Short bufSize – Specify the buffer size, e.g. 20.

char FAR *regionID – Returns the current region, e.g. North America.

Return Values: 0 for success, -1 on failure.

int PCMSGetNumRegions(PCMServerID serv);

Returns the number of regions in the data installed on the specified server.

int PCMSGetRegionName(PCMServerID serv, inti dx, char
*name, int bufSize);

Returns the name of the region for the given index number.

 Chapter 3: Using the PC*MILER|Connect API’s 41

3.11 Switching the Data Set
Users who wish to switch to a different data set need to make the change in the
PC*MILER user interface using the Change Data Set option (Map tab > Utilities
group > Change Data Set). The correct region must be set – see section 3.10 above.
See section 3.37 on using the PC*MILER|Energy data set.

3.12 Country Code Format Options
(PC*MILER|Worldwide only) By default PC*MILER|Worldwide accepts country
abbreviations as FIPS codes. To use another country code format you will need to
add a line to the PCMSERVE.INI file in the Options section (see Appendix I).
Supported options are: FIPS, ISO2, ISO3, GENC2, and GENC3. A sample line:

[Options]
CountryAbbrevType=ISO2

If this line is not specified, the option can be set in the PC*MILER user interface.
The setting in the INI file overrides whatever is set in PC*MILER.

3.13 Using Mexican Postal Codes
Mexican postal codes are now included in the database. Because U.S. ZIP codes
and Mexican postal codes share a similar format, new PCMSERVE.INI settings
and an API are available to ensure that the entered ZIP/postal code matches the
desired location. New settings n the PCMSERVE.INI (found in the C:\Windows
folder) are described below. Note that if both are set to FALSE or are not in the
INI, the default U.S. ZIP code will be used.

UseUSPostCodes=True/False
UseMexPostCodes=True/False

To add or edit these options, open PCMSERVE.INI in Notepad or Wordpad. If
they are not already there, add them to the [OPTIONS] section. The possible setting
combinations are:

• UseUSPostCodes=False and UseMexPostCodes=False – Defaults to the U.S.
ZIP with no routing to Mexican postal codes

• UseUSPostCodes=True and UseMexPostCodes=False – Same as above

• UseUSPostCodes=True and UseMexPostCodes=True – Defaults to the U.S.
ZIP, must pass an Estados code to get Mexican location (e.g. “50510,EM”)

• UseUSPostCodes=False and UseMexPostCodes=True – Only Mexican postal
codes are available, in the U.S. only city-state pairs will get U.S. location (e.g.
“Chico, CA”

 PC*MILER|Connect User’s Guide 42

The API’s that control these settings are below. Remember that an API call
overrides both the PCMSERVE.INI setting and the setting in the PC*MILER user
interface (this is true for all API’s). Each of these functions is a server option and
should be made in a single call.

int PCMSZipCodeOption(server, X)

where “X” may be the following: 0 = Use default U.S. ZIP code; 1 = Use default
Mexican postal code; or 2 = Use default code, whether U.S. or Mexican.

int PCMSZipCodeUSAndMexico(PCMServerID serv) (deprecated)

Using the above API call, a pick list will contain both U.S. and Mexican postal
codes if the same postal codes exist in both the U.S. and Mexico. The sort order of
the pick list will put U.S. codes first.

int PCMSZipCodeMexicoOnly(PCMServerID serv) (deprecated)

Using the above API call, only Mexican postal codes will be returned. Therefore,
no matches will be returned if an attempt is made to geocode a U.S. postal code.

int PCMSZipCodeUSOnly(PCMServerID serv) (deprecated)

Using the above API call, only U.S. postal codes will be returned. Therefore, no
matches will be returned if an attempt is made to geocode a Mexican postal code.

NOTE: The above settings affect options 1 and 5 but do not have any effect when
option 0 or 2 is passed (see section 3.7).

3.14 Setting the ‘NL’ Abbreviation Preference
The function below enables users to choose whether to set the abbreviation ‘NL’ to
geocode to Newfoundland and Labrador locations in Canada or to Nuevo Leon
locations in Mexico. Use MX for Nuevo Leon, or CN for Newfoundland and
Labrador. This can also be set as a default value in the [Options] section of the INI
file – see Appendix I.

int PCMSSetNLAbbreviation (trip, const char* CanorMX);

 Chapter 3: Using the PC*MILER|Connect API’s 43

3.15 State/Country Lists
The functions described below can be used to build a list of states and countries.

int PCMSStateList (PCMServerID serv)

The PCMSStateList() function returns the number of U.S. states, Canadian
provinces, Mexican estados, and Central American and Caribbean countries
included in the North America region.

int PCMSStateListItem (PCMServerID, int index, char
*buffer, int bufSize, bool bAddCountry = false);

The PCMSStateListItem() function prints the name and state code for the given
index into the user-supplied buffer, delimited by tabs. The bAddCountry
Boolean will append the country name and abbreviation to the buffer, defaulted to
false. Returns the number of bytes written to the buffer.

int PCMSCountryList (PCMServerID serv, const char*
regionID);

The function PCMSCountryList() returns the number of countries defined by the
supplied region. regionID may be one of the following: Africa, Asia, Europe,
ME, NA, Oceania or SA.

int PCMSCountryListItem (PCMServerID serv, const char*

regionID, int index, char *buffer, int bufSize);

The function PCMSCountryListItem() below prints the name and FIPS country
code for the given index into the user-supplied buffer, delimited by tabs. Returns
the number of bytes written to the buffer. regionID may be one of the following:
Africa, Asia, Europe, ME, NA, Oceania or SA.

3.16 Translating Between Latitude/Longitudes and Places

IMPORTANT NOTES for PC*MILER|Worldwide Users: Before using these
functions, the region must be set to match the lat/longs that will be sent or received
(see section 3.10). In North America, city names will include state, province or
estado, but not the county. In all other regions, the city format is City, Country,
with the country abbreviation being a FIPS 2-character, ISO 2-character, or ISO 3-
character code depending on the setting in the PC*MILER user interface. If you

 PC*MILER|Connect User’s Guide 44

are passing a country code, the format must match this setting in PC*MILER (File
menu > Application Settings > Worldwide tab.

(The functions below were deprecated for Version 30 – use PCMSLookup with
PCMSGetFmtMatch4() instead of CityToLatLong, and PCMSLookup instead of
LatLongToCity and LatLongToAddress.)

int PCMSCityToLatLong(PCMServerID serv, const char FAR
*name, char FAR *buffer, int bufSize); (deprecated)

int PCMSLatLongToCity(PCMServerID serv, const char FAR
*latlong, char FAR *buffer, int bufSize);
(deprecated)

The function PCMSCityToLatLong() takes a PC*MILER place name (city-state,
five digit ZIP, SPLC, Canadian Postal Code, or custom name) and returns the
latitude/longitude in degrees, minutes, seconds format (dddmmssN, dddmmssW).

The function PCMSLatLongToCity() takes a latitude/longitude (degrees,
minutes, seconds or decimal degrees format) and returns by default the miles and
direction from the PC*MILER place name at the closest end of the closest road
segment. This may be either a city-state or a road intersection. This function
connects latitude/longitudes to the highway network as if you were routing to or
from the latitude/longitude.

The two functions may be, but are not necessarily reversible. That is because not
all PC*MILER place names are located at the end points of road segments. In the
example below, Skillman, NJ is located 1.2 miles northwest of Blawenburg, NJ,
which is the end point on the nearest link to Skillman (required arguments are left
out for clarity).

PCMSCityToLatLong(SKILLMAN, NJ)→0402512N,0744253W

PCMSLatLongToCity(0402512N,0744253W)→1.2 NW
BLAWENBURG, NJ

Parameters:
PCMServerID serv – The PC*MILER server ID.

const char FAR *name or *latlong – PC*MILER place name can be city-state,
five-digit ZIP, SPLC, Canadian Postal Code, or custom name. Latitude/longitude
can be in degrees, minutes, seconds or decimal degrees format.

char FAR *buffer – Returns the city and state name, e.g. Princeton NJ.

 Chapter 3: Using the PC*MILER|Connect API’s 45

int bufSize – Specify the buffer size, e.g. 72 (large enough for the city and state
name).

Return Values:
Both of the above functions return the number of characters copied into the buffer,
or -1 in case of error.

int PCMSLatLongToAddress(PCMServerID serv, const char

FAR *latlong, char FAR *buffer, int bufSize);
(deprecated)

NOTE: In place of the above deprecated function, use PCMSLookup() with option
3 and PCMSGetFmtMatch4(). For example:
PCMSLookup (trip, “32.921474,-97.225534”, 3); and
PCMSFmtMatch4() as described in section 3.7

(PC*MILER|Streets required) The above function takes a latitude/longitude
(degrees, minutes, seconds or decimal degrees format) and returns the miles to the
address. This function connects latitude/longitudes to the highway network as if
you were routing to or from the latitude/longitude. Returns the number of
characters copied into the buffer, or -1 in case of error.

NOTE: The two functions below were deprecated in Version 29. Use
PCMSNewTrip() or PCMSNewTripWithRegion(), PCMSLookUp(Option=1),
PCMSGetFmtMatch4() and PCMSDeleteTrip().

int PCMSAddressToLatLong(PCMServerID serv, const char
FAR *name, char FAR *buffer, int bufSize); (deprecated)

int PCMSAddressToLatLong2(PCMServerID serv, const char
FAR *name, char FAR *buffer, int bufSize, int
easyMatch); (deprecated)

3.17 SPLCs As Stops
PC*MILER|Connect enables you to enter SPLCs as stops. You can use a SPLC in
any function that takes city/state or ZIP code as an argument. SPLCs can be six or
nine digits in length. SPLC data used in PC*MILER products is owned, maintained
and copyrighted by the National Motor Freight Traffic Association, Inc.
In order to differentiate a SPLC from a postal code, SPLCs must be entered with
the prefix “splc”. For example, if 111009 is a SPLC, you enter “splc111009” as a
stop as shown below:

PCMSCalcTrip (trip,“splc111009”, “MADAWASKA, ME”);
PCMSLookup(trip, “splc111009”, 1);

 PC*MILER|Connect User’s Guide 46

3.18 Route Options and Setting Defaults
The following functions affect the trip’s routing calculation and report formats. For
more detailed descriptions of route types and route options, refer to the PC*MILER
User's Guide. Also see Appendix I: The PCMServe.INI File; section 3.19, Routing
With Custom Vehicle Dimensions; and Appendix B: Constants and Error Code
Descriptions.

Default options that are set in PC*MILER via the default Route Profile will be
active where an option is not specified either directly in Connect or in the INI file.
The order of precedence is:

• Options that are set directly in Connect take precedence over the default
options set in PC*MILER and the INI file.

• Options set in PCMSERVE.INI take precedence over those set in
PC*MILER.

• An option set as the default in PC*MILER takes effect only in the absence
of settings 1 and 2, and only when a key for that option exists in the
PCMSERVE.INI. For example, the Distances application setting in
PC*MILER would only take effect when the line DistancePrecision=
exists in the [OPTIONS] section of the INI, without an assigned value.

void PCMSSetCalcType();

int PCMSGetCalcType();

void PCMSSetCalcTypeEx();

int PCMSGetCalcTypeEx();

int PCMSSetLoaded();

int PCMSSetGovernorSpeed();

int PCMSGetGovernorSpeed();

void PCMSSetFerryDiscouraged();

void PCMSSetElevationDiscouraged();

void PCMSSetElevationLimit();

int PCMSGetNumMilesDecimals();

int PCMSSetNumMilesDecimals();

void PCMSSetBordersOpen();

void PCMSSetKilometers();

void PCMSSetShowFerryMiles();

 Chapter 3: Using the PC*MILER|Connect API’s 47

void PCMSSetMiles();

void PCMSSetAlphaOrder();

void PCMSSetVehicleType();
(PC*MILER|Streets only)

void PCMSSetRoadNameOnly();
(PC*MILER|Streets only) (deprecated in Version 29)

void PCMSSetRouteLevel(); (PC*MILER|Streets only)

int PCMSGetExactLevel();
(PC*MILER|Streets only) (deprecated in Version 27)

int PCMSSetExactLevel();
(PC*MILER|Streets only) (deprecated in Version 27)

void PCMSSetCost();

int PCMSGetCost();

void PCMSSetCustomMode();

int PCMSSetRoadSpeed();

int PCMSGetRoadSpeed();

void PCMSDefaults();

void PCMSSetBreakHours(); (deprecated in Version 29 – will return
“invalid region”)

long PCMSGetBreakHours(); (deprecated in Version 29 – will return
“invalid region”)

void PCMSSetBreakWaitHours(); (deprecated in Version 29 – will return
“invalid region”)

long PCMSGetBreakWaitHours(); (deprecated in Version 29 – will return
“invalid region”)

void PCMSSetBorderWaitHours(); (deprecated in Version 29 – will return
“invalid region”)

long PCMSGetBorderWaitHours(); (deprecated in Version 29 – will return
“invalid region”)

TIP: A new PCMSSetStopOptions() function related to Hours of Service (HOS)
management is available for setting the on-duty status, duration, and type for a stop.
See section 3.40.

 PC*MILER|Connect User’s Guide 48

void PCMSSetCalcType (Trip tripID, int routeType);

The above function sets the trip’s routing method. Valid values are 0 (Practical), 1
(Shortest), 2 (National), 3 (AvoidToll) 4 (Air), or (POV) 5. Constants for these
values are in Appendix B. “POV” (Personally Owned Vehicle) routing is calculated
for automobile travel. This function resets the vehicle type, so call it before, not
after, setting the vehicle type to avoid unpredictable results.

When using Route Profiles (section 3.20), you may need to use
PCMSSetCalcTypeEx rather than PCMSSetCalcType because of the overwrite
action mentioned above. This is because PCMSSetCalcType treats what are route
options in the user interface (State + National Network, Toll Discouraged, and
POV) as separate mutually exclusive route types. For example, if the 53-Foot
profile which includes the State + National Network option is loaded first and then
PCMSSetCalcType is called to set the route type to Shortest, State + National
Network routing will be turned off. Using PCMSSetCalcTypeEx you can explicitly
set the route type to Shortest and specify the continued use of the State + National
Network option that is not overwritten.

NOTE: Beginning in Version 30 of the PC*MILER user interface, the “National
Network” and “53-Foot Trailer or Twins” routing options have been renamed into
one combined option, “State + National Network”. In PC*MILER|Connect, for an
API that calls a routing type parameter (either PCMSSetCalcType or
PCMSSetCalcTypeEx), the “National” option now functions as if both the
“FiftyThree” and “National” options were set. The “FiftyThree” option is
deprecated going forward but backward compatibility will be maintained – using it
will generate this deprecation message in the log file: “The CALC_FIFTYTHREE
(6) and CALCEX_OPT_FIFTYTHREE (1024) options are deprecated. Please use
CALC_NATIONAL (2) option instead.”

In previous versions, the "National" option applied a preference within the routing
algorithm to favor using the US Federally designated National Network (primary
Interstates with reasonable entry/egress points up to 1 mile off the Interstate). The
"FiftyThree" option applied a preference within the routing algorithm to favor using
the state designated extensions to the Federal National Network (additional
highways and supporting roads that can be any distance off the Interstate, as
determined by the individual states). In Version 30 and higher, the new “National”
option applies both preferences.

NOTE: The PCMSSetStopOptions() function related to Hours of Service (HOS)
management is available for setting the on-duty status, duration, and type for a stop.
See section 3.40.

int PCMSGetCalcType (Trip tripID)

 Chapter 3: Using the PC*MILER|Connect API’s 49

The above function returns the trip’s current route type.

void PCMSSetCalcTypeEx (Trip trip, int rtType, int

optFlags, in vehType)

The above function sets the trip’s routing method when route type combinations
are desired. The rtType (route type) parameter requires one (and only one) of
either Practical, Shortest, or Air. optFlags (options) with either Practical or
Shortest can be AvoidToll and/or National. (Note that National now includes
National Network and 53 Foot routing preferences - see NOTE above for
PCMSSetCalcType). Options are separated by the | symbol. The vehType
parameter can be Veh_Truck or Veh_Auto. See Appendix B for values.

int PCMSGetCalcTypeEx (Trip trip, int* pRtType, int*

pOptFlags, int* pVehType)

The above function returns the trip’s current routing method when
PCMSSetCalcTypeEx() has been used. NULL can be passed for pRtType,
pOptFlags, and/or pVehType if value is not needed.

IMPORTANT: The CalcTypeEx or CalcType function call should be used
before assigning custom vehicle dimensions with SetVehicleConfig (section 3.19
below) to avoid unpredictable results.

NOTE: CalcTypeEx and CalcType functions cannot be used together. For
example, where SetCalcTypeEx has been used to set the routing method,
GetCalcType cannot be used to return the current routing method.

int PCMSSetLoaded (long tripID, int which, BOOL loaded)

The above function allows you to specify if your truck is loaded or unloaded at any
given stop on a trip.

Parameters:
long trip - The trip ID.

int which – The stop on the trip (a trip’s origin in stop zero).
Bool loaded – Set to true if truck is loaded, false if truck is empty.

Return Values:
Returns -1 on failure, 0 on success.

int PCMSSetGovernorSpeed(Trip trip, long speed)

 PC*MILER|Connect User’s Guide 50

Sets the vehicle’s governor speed. This will be the maximum speed allowed when
running the trip and overrides all other road speeds including custom. Governor
speed must be a positive number to be in effect or set to 0 to disable the feature.
The default is 55 mph.

Parameters:
Trip trip - The trip ID.

long speed – The governor speed must be a positive number to be in effect or set
to zero (0) to disable the feature. A negative speed value will result in an error
being returned. There is no upper bound on the speed value that can be set.
However, unrealistically high values will have no effect on the trip’s estimated
travel times. The speed unit (MPH vs KPH) is determined by the distance units
setting of the trip.

Return Values:
Returns -1 on failure, 0 on success.

int PCMSGetGovernorSpeed(Trip trip)

Returns the governor speed setting for this trip. The speed will be returned in units
that match the distance units setting of the trip (MPH or KPH).

Parameters:
Trip trip - The trip ID.

Return Values:
Zero will be returned if the governor speed is disabled and it will be a positive
number if it is enabled.

void PCMSSetFerryDiscouraged (Trip trip, bool onOff)

The above function determines if ferry miles will be avoided on a route. As in the
PC*MILER user interface, ferries will be avoided unless the resulting alternate
route would be extremely impractical or impossible. TRUE means ferry distances
will be avoided.

void PCMSSetElevationDiscouraged (Trip trip, bool

onOff)

The above function enables setting a customized limit on the elevation of the roads
a route will use. As in the PC*MILER user interface, elevations at or above this
height will be avoided unless 1) it is extremely impractical to do so; or 2) a stop or
destination on the route is located at the higher elevation.

 Chapter 3: Using the PC*MILER|Connect API’s 51

void PCMSSetElevationLimit (Trip trip, long altitude)

Sets the threshold for the elevation (in feet) to avoid when using
PCMSSetElevationDiscouraged(). Enter the elevation in feet that should cause
PC*MILER to calculate an alternate route. The default here is 7500 feet and above,
as in the PC*MILER interface. A “get” option is not provided, so make sure you
are using the right elevation every time Elevation Discouraged routing is used.

int PCMSGetNumMilesDecimals ()

The above function gets the number of decimals currently returned when distances
are calculated. Possible return values are: 1 = tenths, 2 = hundredths, 3 =
thousandths.

int PCMSSetNumMilesDecimals (int iNumMilesDecimals)

The above function sets the number of decimals that will be returned when
distances are calculated. Possible values are: 1 = tenths, 2 = hundredths, 3 =
thousandths.

void PCMSSetBordersOpen (Trip tripID, bool open)

Prevents routes from crossing international borders if two stops are in the same
country, even if the best route goes through another country. Set open to TRUE to
allow border crossings, and FALSE to prevent them.

void PCMSSetKilometers (Trip tripID)

void PCMSSetMiles (Trip tripID)

PCMSSetKilometers() and PCMSSetMiles() set the returned distance values to
either kilometers or miles.

void PCMSSetShowFerryMiles (Trip trip, bool onOff)

Sets the trip’s ferry mode for reporting purposes. TRUE means ferry distances will
be included in distance and cost calculations, FALSE means they will not. Actual
routing and travel times are not affected.

 PC*MILER|Connect User’s Guide 52

void PCMSSetAlphaOrder (Trip tripID, bool alphaOrder)

Determines the order states are listed in the State Report. If alphaOrder is TRUE,
then states are listed alphabetically, otherwise they are listed as driven.

void PCMSSetVehicleType (Trip tripID, bool onOff)

Determines whether Heavy Vehicle truck restrictions on roads are respected when
the route is calculated. Restrictions are on by default, set to Off for Light Vehicle
routing. See the PC*MILER User’s Guide for more on these two options.
(Available with PC*MILER|Streets only.)

void PCMSSetRouteLevel (Trip tripID, bool UseStreets)

Allows the setting of routing to be toggled between street level routing and highway
only routing. It provides the same effects as the UseStreets setting in the
PCMSERVE.INI except it can be changed in between trips. (Available with
PC*MILER|Streets only.)

void PCMSSetCost (Trip tripID, int cost)

int PCMSGetCost (Trip trip)

PCMSSetCost()sets the trip’s cost per mile/kilometer option. PCMSGetCost()
returns the trip’s cost option.

void PCMSSetCustomMode (Trip trip, bool onOff)

PCMSSetCustomMode() sets the trip’s Use Custom Roads option. Set onOff to
TRUE to enable the custom routing designations set in the PC*MILER user
interface; and FALSE to turn this option off.

int PCMSSetRoadSpeed(Trip trip, long speed, const char

*state, long type, bool urban = false);

int PCMSGetRoadSpeed(Trip trip, const char *state,
long type, bool urban = false);

PCMSSetRoadSpeed() and PCMSGetRoadSpeed() set and get the road speed
for the given jurisdiction and road type. Trip is the trip. Speed is a value above
0 to set the selected road type to. State is the state/province/country abbreviation
of the desired state to change. Examples in North America are “NY” or “QC.” If

 Chapter 3: Using the PC*MILER|Connect API’s 53

PC*MILER|Worldwide or DTOD data is installed, in worldwide regions it would
be country abbreviations as in other Connect API’s that use a state abbreviation.

Parameters:
type – A new set of defined constants that begin with ROADTYPE. Below are the
valid road types, identical to the road types in the PC*MILER user interface:

#define ROADTYPE_INTERSTATE 1
#define ROADTYPE_MAJORHIGHWAY 2
#define ROADTYPE_PRIMARY 3
#define ROADTYPE_FERRY 4
#define ROADTYPE_SECONDARY 5
#define ROADTYPE_RAMP 6
#define ROADTYPE_LOCAL 7

urban – Defaults to false, indicates if the roads are urban or not. To set all roads of
a type, both the urban and non-urban (rural) must be set. Example:

int _CALLCONV PCMSSetRoadSpeed(Trip trip, long speed, const
char *state, long type, bool urban)
{
 LOG_PROLOG5(PCMSSetRoadSpeed, trip, speed, state,

type, urban);

 if (speed < 1 || type < ROADTYPE_INTERSTATE || type
> ROADTYPE_LOCAL)

 {
 SetError(PCMS_INVALIDINPUT);
 LOG_RETURN1(-1);
 }

 GET_RT_ENGINE();
 GET_ROUTE(trip);
 GET_OPTIONS();

 if (pRt->SetRoadSpeed(speed, state, type, urban) ==
-1)

 {
 SetError(PCMS_INVALIDINPUT);
 LOG_RETURN1(-1);
 }

 LOG_RETURN1(0);
}

NOTE for PC*MILER|Energy Users: To set a new default road speed for
Energy roads to and from well heads and facilities, you must make the change in
the PC*MILER user interface (File menu > Application Settings > Road Speeds)
and then restart PC*MILER|Connect. This is a global setting.

 PC*MILER|Connect User’s Guide 54

Return Values:
GetRoadSpeed() returns the road speed for the indicated values. SetRoadSpeed()
simply returns non-negative on success. Both will return a -1 and an INVALID
ARGUMENT error code if any supplied parameters are out of range, or if an invalid
state is passed in. Example:

int _CALLCONV PCMSGetRoadSpeed(Trip trip, const char *state,

long type, bool urban)
{
 LOG_PROLOG4(PCMSSetRoadSpeed, trip, state, type, urban);

 if (type < ROADTYPE_INTERSTATE || type > ROADTYPE_LOCAL)
 {
 SetError(PCMS_INVALIDINPUT);
 LOG_RETURN1(-1);
 }

 GET_RT_ENGINE();
 GET_ROUTE(trip);
 GET_OPTIONS();

 int roadSpeed = pRt->GetRoadSpeed(state, type, urban);

 if (roadSpeed < 0)
 {
 SetError(PCMS_INVALIDINPUT);
 LOG_RETURN1(-1);
 }

 LOG_RETURN1(roadSpeed);
}

It is possible to set and get all the available options at once using the functions
below. All options are stored internally to the trip as a bit vector. See Appendix B
for values.

long PCMSGetOptions(Trip tripID); (deprecated)

void PCMSSetOptions(Trip tripID, long opts); (deprecated)

void PCMSDefaults(Trip tripID);

(These functions have been deprecated, use API’s for individual options instead..)
To get all the options at once and save them as a long integer bit vector, use
PCMSGetOptions(). Then use PCMSSetOptions() to put all the values back into
the trip. Parameter opts should be a bitwise OR of the option values or the results
of a previous call to PCMSSetOptions(). This could be used to transfer options from
one trip to another; or to set a trip’s options from a global set of defaults.

 Chapter 3: Using the PC*MILER|Connect API’s 55

PCMSDefaults() will reset a trip’s options to the defaults the engine was started
with. You must shut down all client applications using PC*MILER|Connect before
making any changes to the defaults in the INI file. See Appendix I on modifying the
INI file for details.

NOTE: Stop optimization is not an option. It is an action, and therefore not saved
as a trip’s state. See section 3.27, Optimizing the Stop Sequence.

3.19 Routing With Custom Vehicle Dimensions
The vehicle dimension options enable you to generate routes based on custom
vehicle dimensions. PC*MILER|Connect users can generate routing that conforms
to the requirements of a vehicle’s height, length, width and weight using the
function PCMSSetVehicleConfig().

If a vehicle weight and/or height is entered, PC*MILER route calculations will take
into account restrictions on roads and bridges to ensure that the vehicle’s
weight/height is below the restriction(s). Vehicle weight, length and width
information is checked against the threshold at which a truck becomes “oversized”
and appropriate routing is generated.

Additionally, PC*MILER supports calculation of routes and toll costs for smaller
vehicles (vans, pickup trucks, SUVs, automobiles, etc. that are classed less than
9,000 lbs./4,082 kgs.).

IMPORTANT: The function call SetCalcType() or SetCalcTypeEx() should be
used before SetVehicleConfig() to avoid unpredictable results. For example, if
SetVehicleConfig() is set for automobile routing but SetCalcType() is called later
to use Practical routing, truck routing will be run.

IMPORTANT: Every time the vehicle width is set to 102 in. or more, or the length
to 49 ft. or more, or a Route Profile is selected that includes those dimensions or
greater (such as the 53' semitrailer or 28' double trailer profiles), the State +
National Network routing option is set automatically.

However, if you then set the vehicle width to be 96 in. or less, and a length of 48
ft. or less, or you select a Route Profile with those dimensions or less (such as the
48’ semitrailer or 40’ straight truck profiles), the State + National Network routing
option will not be turned off automatically. You must manually undo these settings
each time.

This functionality allows you to generate routes that follow National Network and
state-designated oversize networks, even if you are not running 53 ft. trailers,
double trailers, or 102 in. wide trailers. However, you need to be aware of this
behavior if you want to switch back and forth between routes for different types of
equipment.

 PC*MILER|Connect User’s Guide 56

int PCMSSetVehicleConfig (Trip tripID, bool units, bool
overPerm, double height, double width, double length, int
weight, int axle, bool lcv)

All parameters are required for this function. Note that Trucks weighing more than
80,000 lbs. require a permit in most states in the United States

Parameters:
trip – A Trip type parameter with the trip ID.

units – FALSE corresponds to English and TRUE to Metric; default = FALSE.

overPerm – Should be set to TRUE if the vehicle weight exceeds 80,000
lbs./36,287 kgs. (indicates that an oversize permit has been obtained). This option
does not affect routing, it is only intended as a reminder that a permit may be
required for the vehicle dimensions entered; default = FALSE.

height – The truck height in inches or meters depending upon units; maximum =
162 inches/4.11 meters, no minimum; default = 13 feet 6 inches/4.11 meters.

width – The truck width in inches or meters depending upon units; maximum = 102
inches/2.59 meters, no minimum; default = 96 inches or less.

length – The truck length in feet or meters depending upon units; maximum = 82
feet/25 meters, no minimum; default = 48 feet/14.63 meters.

weight – The truck weight in pounds or kilos depending upon units; maximum =
132,000 lbs./ 59,874 kgs., no minimum; default = 80,000 lbs./36,287 kgs.

axle – The number of axles on the truck, used only for toll cost calculation (does
not affect routing); note that 2 axle includes two axle dual rear wheel vehicles
only; any value can be entered, typical values are 2 (indicating an automobile) or
5 (indicating a truck); default = 5.

lcv – Identifies a long combination (multiple trailer) vehicle if set to TRUE;
default = FALSE.

Return Values:

Returns 0 on success, -1 indicates that one or all of the length, width, height, or
weight values are outside of the acceptable range and none of the vehicle
configuration values will be set for this trip.

 Chapter 3: Using the PC*MILER|Connect API’s 57

3.20 Using Route Profiles
To query and apply route profiles created in the PC*MILER user interface, use the
functions described below. Profiles enable you to apply custom combinations of
routing options and vehicle dimension settings that are used frequently, rather than
setting individual options for each trip.

NOTE: The vehicle profiles feature was deprecated in PC*MILER Version 30,
use route profiles or PCMSSetVehicleConfig() to set vehicle attributes.

int PCMSSetProfileName(Trip trip, const char
*profileName)(deprecated in Version 30 – see NOTE above)

For a particular trip, the above function turns on the specified vehicle profile created
in PC*MILER.

Parameters:
trip – The trip to which this vehicle profile will be applied.

const char *profileName – The name assigned to the vehicle profile when it was
created in PC*MILER.

Return Values:
Returns -1 in case of error.

int PCMSSetRoutingProfileName(Trip trip, const char
*profileName)

For a particular trip, the above function turns on the specified route profile created
in PC*MILER.

Parameters:
trip – The trip to which this route profile will be applied.

const char *profileName – The name assigned to the route profile when it was
created in PC*MILER.

Return Values:
Returns -1 on error. “Profile not found” error message will write to the log file if
input name is not a valid route profile name.

int PCMSGetNumRoutingProfiles(PCMServerID server)

Gets the number of created route profiles.

 PC*MILER|Connect User’s Guide 58

Parameters:
PCMServerID server – The PC*MILER server ID.

Return Values:
Returns the number of route profiles on success, -1 indicates an error.

int PCMSGetRoutingProfileName(PCMServerID server, int
RoutingProfileIndex, char* buffer, int bufSize)

Gets the name of the route profile given its index.

Parameters:
PCMServerID server – The PC*MILER server ID.

RoutingProfileIndex – The index starts from 0 and has a maximum value of the
total number of created route profiles minus 1.

buffer – The returned route profile name.

bufSize – The buffer size of the returned route profile name.

Return Values:
Returns the number of bytes written in the buffer.

3.21 Using ETA/ETD and Traffic Data

NOTE: A subscription to PC*MILER|Traffic must be licensed and installed, and
there must be an active Internet connection to access traffic data.

The functions listed below are related to time-based routing and
PC*MILER|Traffic features. PC*MILER time-based routing can be generated
with or without using traffic data. Using traffic data will increase the precision of
time estimates.

The setting below can be added to the PCMSERVE.INI file, it toggles the activation
of traffic data for use with time-based routing. See Appendix I on the INI file. This
setting is the equivalent of the “Traffic Enabled” option in the PC*MILER UI, if
set to TRUE traffic will be enabled:

HistoricalRoadSpeeds=True/False

If traffic data is not used, travel times and ETA’s are calculated in the same manner
as in all previous versions of PC*MILER, based on average road speeds (either
PC*MILER default or user-specified) by class of road in each state/province.

 Chapter 3: Using the PC*MILER|Connect API’s 59

If Traffic is enabled and a departure or arrival time and date are not entered, INRIX
default travel times that reflect free-flow conditions – think middle of the night –
are used. (This is the “typical” option mentioned below.)

Traffic data is collected by road segment. When a departure or arrival time and
date are entered, travel times and ETA’s will be calculated based on historical,
typical and/or real-time traffic data, depending on the arrive/depart and day/time
settings.

Historical data reflects how average traffic patterns affect road speeds on the road
segments used by the generated route. (An “average” historical pattern is created
using a historical time slice: 7 days in a week, with each day divided into 15-minute
time slices.)

Typical data uses road speeds that would occur if there were no traffic on those
road segments.

Real-time data is just that: current traffic patterns that are fed into the system in
real-time (see NOTE below on how it is used for travel time calculations).

NOTE: Specifying “1” (for “now”) for the EntryDateType in the first two
functions below will cause real-time traffic data to be used for travel time
calculations for the first 15 miles of a route.

int PCMSSetDepartureTime(Trip tripID, int EntryDateType,

int DepartTimeZone, int DepartYear, int DepartMonth,
int DepartDay, int DepartHour, int DepartMinute, int
DepartSecond, int DepartDayOfWeek);

Use the above API to set a departure time from the origin.

Parameters:
long trip – The trip ID.

int EntryDateType – Entry Date – 0=unknown, 1=now, 2=specific, 3=Day of Week.

int DepartTimeZone – Departure Time Zone.

int DepartYear – Departure Year (e.g. 2017).

int DepartMonth – Departure Month (e.g. 10 for October).

int DepartDay – Departure Day (e.g. 23 for 23rd day of October).

int DepartHour – Departure Hour (e.g. 22 for 10:00 PM).

int DepartMinute – Departure Minute (e.g. 10 for tenth minute).

 PC*MILER|Connect User’s Guide 60

int DepartSecond – Departure Second (e.g. 0 for zero seconds).

int DepartDayOfWeek – Departure Day of Week (1=Monday,… 0=Sunday.

int PCMSSetArrivalTime(Trip tripID, int EntryDateType,

int ArrivalTimeZone, int ArrivalYear, int
ArrivalMonth, int ArrivalDay, int ArrivalHour,
int ArrivalMinute, int ArrivalSecond, int
ArrivalDayOfWeek);

Use the above API to set an arrival time at the destination.

Parameters:
long trip – The trip ID.

int EntryDateType – Entry Date – 0=unknown, 1=now, 2=specific, 3=Day of Week.

int ArrivalTimeZone – Arrival Time Zone.

int ArrivalYear – Arrival Year (eg. 2017).

int ArrivalMonth – Arrival Month (e.g. 10 for October).

int ArrivalDay – Arrival Day (e.g. 23 for 23rd day of October).

int ArrivalHour – Arrival Hour (e.g. 14 for 2:00 PM military time).

int ArrivalMinute – Arrival Minute (e.g. 10 for tenth minute).

int ArrivalSecond – Arrival Second (e.g. 0 for zeroth second).

int ArrivalDayOfWeek – Arrival Day Of Week (1=Monday,… 0=Sunday).

int PCMSGetETA(Trip tripID, int stopNum, int*
ArrivalYear, int* ArrivalMonth, int* ArrivalDay,
int* ArrivalHour, int* ArrivalMinute, int*
ArrivalSecond);

Use the above API to generate the estimated time of arrival based on the provided
parameters in PCMSSetDepartureTime().

Parameters:
long trip – The trip ID.

int stopNum – Stop number.

int* ArrivalYear – Arrival Year (e.g. 2017).

 Chapter 3: Using the PC*MILER|Connect API’s 61

int* ArrivalMonth – Arrival Month (e.g. 10 for October).

int* ArrivalDay – Arrival Day (e.g. 23 for 23rd day of October).

int* ArrivalHour – Arrival Hour (e.g. 14 for 2:00 PM military time).

int* ArrivalMinute – Arrival Minute (e.g. 10 for tenth minute).

int* ArrivalSecond – Arrival Second (e.g. 0 for zeroth second).

int PCMSGetETD(Trip tripID, int stopNum, int*

DepartYear, int* DepartMonth, int* DepartDay,
int* DepartHour, int* DepartMinute, int*
DepartSecond));

Use the above API to generate the estimated time of departure based on the
provided parameters in PCMSSetArrivalTime().

Parameters:
long trip – The trip ID.

int stopNum – Stop number.

int* DepartYear – Departure Year (e.g. 2017).

int* DepartMonth – Departure Month (e.g. 10 for October).

int* DepartDay – Departure Day (e.g. 23 for 23rd day of October).

int* DepartHour – Departure Hour (e.g. 14 for 2:00 PM military time).

int* DepartMinute – Departure Minute (e.g. 10 for tenth minute).

int* DepartSecond – Departure Second (e.g. 0 for zeroth second).

int PCMSSetRoadSpeedType(Trip tripID, roadSpeedOption);

Use the above API to indicate if time estimate calculations for a route will be based
on the traditional PC*MILER average road speeds by road type or historical traffic
data.

Parameters:
long trip – The trip ID.

int roadSpeedOption – 1 = Traditional ALK road speeds, 2 = Road speeds based

on historical traffic data.

 PC*MILER|Connect User’s Guide 62

int CALLCONV PCMSTrafficStatus();

Queries the Traffic Features subscription status.

Return Values:
May return the following: -1 = an unlimited subscription that is not set to expire; -
2 = there is no subscription and Traffic Features are not accessible; or if a number
greater than or equal to 0 is returned, it is the number of days left until the traffic
subscription expires.

Sample code using time-based routing is below, calculating what the required time
of departure at four different locations would be so that an arrival time of 8:30 AM
on Jul. 28, 2017can be achieved.

NOTE: Additional sample code and related documentation is now provided to
make it easier for users to take advantage of time-based and PC*MILER|Traffic
features in PC*MILER|Connect. This resource material can be found in the
PC*MILER installation folder, usually C:\ALK Technologies\PCMILER31\
Connect\CSharp folder.

TIMEZONE INDICES:

0 HAST NA 1 "Hawaii (GMT-10)"
1 AKST AKDT NA 1 "Alaska (GMT-9)"
2 PST PDT NA 1 "Pacific (GMT-8)"
3 MST MDT NA 0 "Arizona (GMT-7)"
4 MST MDT NA 1 "Mountain (GMT-7)"
5 CST CDT NA 1 "Central (GMT-6)"
6 EST EDT NA 1 "Eastern (GMT-5)"
7 AST ADT NA 1 "Atlantic (GMT-4)"
8 NST NDT NA 1 "Newfoundland (GMT-3:30)"
9 GMT BST EU 1 "GMT (GMT-0:0)"
-2 Local

SAMPLE CODE:

// Declarations
int ArrivalYear; // Arrival Time Zone
int ArrivalMonth; // Arrival Month (e.g. 10 for October)
int ArrivalDay; // Arrival Day (e.g. 23 for 23rd day of October)
int ArrivalHour; // Arrival Hour (e.g. 10 for ten o'clock
int ArrivalMinute; // Arrival Minute (e.g. 10 for tenth minute)
int ArrivalSecond; // Arrival Second (e.g. 0 for zeroth second)
int DepartYear; // Arrival Time Zone
int DepartMonth; // Arrival Month (e.g. 10 for October)
int DepartDay; // Arrival Day (e.g. 23 for 23rd day of October)

 Chapter 3: Using the PC*MILER|Connect API’s 63

int DepartHour; // Arrival Hour (e.g. 10 for ten o'clock
int DepartMinute; // Arrival Minute (e.g. 10 for tenth minute)
int DepartSecond; // Arrival Second (e.g. 0 for zeroth second)

// Create a new trip
trip = PCMSNewTrip(server);

// Add the stops to trip
ret = PCMSAddStop(trip, "Dublin, PA");
ret = PCMSAddStop(trip, "Boston, MA");
ret = PCMSAddStop(trip, "Philadelphia, PA");
ret = PCMSAddStop(trip, "Baltimore, MD");

// Set Road Speed Type
// 0 = default road speeds, 2 = Historical Road Speeds
ret = PCMSSetRoadSpeedType(trip, 2);

/*
** Date Type used below
** Date Type - user wants current system time = 1, user specifying
** date and time = 2, user specifying day of week and time = 3
*/

// Set arrival time to be Jul-28-2017 at 8:30 AM
ret = PCMSSetArrivalTime(trip, // Trip ID
 3, // Date Type
 6, // EasternTimeZone 1;
 2017, // Arrival Year (e.g. 2017)
 7, // Arrival Month (e.g. 10 for October)
 28, // Arrival Day(e.g. 23 for 23rd day of October)
 8, // Arrival Hour (e.g. 23 for 11:00 PM)
 30, // Arrival Minute (e.g. 10 for tenth minute)
 0, // Arrival Second (e.g. 0 for zeroth second)
 5); // Arrival Day Of Week (1 == Monday, ... 0 = Sunday)

// Run trip
ret = PCMSCalculate(trip);

// Get the number of stops in trip
int numStops = PCMSNumStops(trip);

// Get the Estimated Time Of Departure for each stop
for (int j=0; j< numStops; j++)

{
 ret = PCMSGetETD(trip, // Trip ID
 j, // Stop Number
 &DepartYear, // Departure Time Zone
 &DepartMonth, // Departure Month (eg. 10 for October)

 PC*MILER|Connect User’s Guide 64

 &DepartDay, // Departure Day (e.g. 23 for 23rd day)
 &DepartHour, // Departure Hour
 &DepartMinute, // Departure Minute (e.g tenth minute)
 &DepartSecond); // Departure Second (e.g zeroth second)
}

// Dump Detail Report
DumpReport(trip, 0, RF_Lines);

// Delete the Trip
PCMSDeleteTrip(trip);

3.22 Least Cost Routing Options
Beginning in Version 24, PC*MILER now includes a Least Cost Routing option.
In PC*MILER|Connect, the function PCMSSetCostOptions allows users to set
cost variables related to Least Cost Routing (miles per gallon, cost per gallon, other
cost per mile, cost of labor per hour, and CO2 pounds per gallon).

int PCMSSetCostOptions(Trip tripID);

Parameters:
bool units – true = METRIC, false = ENGLISH.

int fuelInUnit – 1 = gallons, 0 = liters.

int fuelCost – Fuel Cost Per gallon/liter.

int mpgCostLoaded – Miles or KMs Per gallon or liter for loaded truck.

int mpgCostEmpty – Miles or KMs Per gallon or liter for empty truck.

int otherCostLoaded – Other cost per mile/km for loaded truck.

int otherCostEmpty – Other cost per mile/km for empty truck.

int costTimeLoaded – Cost of time "loaded" per mile/km;
For Report only, not for routing.

int costTimeEmpty – Cost of time "empty" per mile/km;
For Report only, not for routing.

int greenHouseGas – greenhouse gas amount.

 Chapter 3: Using the PC*MILER|Connect API’s 65

For PCMSSetCostOptions(), all values passed in by the user should be multiplied
by 100 in order to be consistent with the rest of the PCMS calls. These are the actual
default options in deftrip.dat:

int fuelInUnit=0; // gallons = 0 and liters = 1
int fuelCost=271; // Fuel Cost $2.71
int dpuCostLoaded=600; // Distance Per Unit loaded is 6.00 mpg
int dpuCostEmpty=600; // Distance Per Unit empty is 6.00 mpg
int otherCostLoaded=12; // Other Cost is $.12 cents a mile for loaded truck
int otherCostEmpty=12; // Other Cost is $.12 cents a mile for empty truck
int costTimeLoaded=4011; // Cost of time "loaded" is $40.11 dollars per hour
int costTimeEmpty=4011; // Cost of time "empty" is $40.11 dollars per hour
int greenHouseGas=2220; // green house gas amount 22.2 lbs

3.23 Getting Location Information

int PCMSGetLocAtMiles(Trip tripID, long miles, char

*location, int size);

int PCMSGetLocAtMinutes(Trip tripID, long minutes,
char *location, int size);

int PCMSLatLongAtMiles(Trip trip, long miles, char
*latlong, BOOL useShpPts);

int PCMSLatLongAtMinutes(Trip trip, long minutes, char
*latlong, BOOL useShpPts);

PC*MILER|Connect can tell you your location at any time or distance into the trip.
Knowing your location a certain number of miles into a trip is critical when planning
fuel stops; knowing your location a certain number of hours into the trip is critical to
determining drivers’ hours of service (HOS) compliance. Together, these functions
allow you to plan trips and manage your fleet more effectively.

PCMSGetLocAtMiles() determines the location miles into the trip from the origin.
Miles are in tenths. This function is for highway-only routing.

PCMSGetLocAtMinutes() determines the location minutes into the trip from the
origin.

In these functions, the location is written into the buffer location as text in the form
distance, direction, location. For example, 35 E Princeton would mean 3.5 miles
east of Princeton (with distances in tenths). size indicates the size of the location
buffer and therefore the maximum number of characters that will be copied. The
function returns 1 on success, 0 on failure.

 PC*MILER|Connect User’s Guide 66

PCMSLatLongAtMiles() determines the lat/long miles into the trip from the
origin. Miles are in tenths.

PCMSLatLongAtMinutes() determines the lat/long minutes into the trip from the
origin.

In both these functions, the lat/long is written into the buffer location as text in the
form latitude,longitude. size indicates the size of the lat/long buffer and therefore
the maximum number of characters that will be copied. The function returns 1 on
success, 0 on failure.

long PCMSLatLongsEnRoute(Trip trip, double* latlong,

long numPairs, BOOL shpPts);

The above function retrieves the sequence of latlongs along a trip.

The array of doubles pointed to by latlong is filled with pairs of latlong coordinates
along the trip. latlong must point to a buffer large enough to hold
2*numPairs*sizeof(double). If NULL is passed as the latlong parameter, the
function returns the total number of pairs. Otherwise, the function returns 1 on
success, 0 on failure.

NOTE: The numPairs parameter is only used to limit the number of points
returned. The actual number of points depends on the particular route in question.
Points along the route are PC*MILER node coordinates and shape point
coordinates (if shpPts is set to TRUE). Therefore, it is recommended that the
application always call the PCMSLatLongsEnRoute() function with latlong as
NULL first, in order to determine the number of actual points along the route.

3.24 Location Radius Search Functionality
The following functions are used to search for all cities, postal codes, custom
places, and/or POI’s (points of interest) within a specified radius of any city/state
or ZIP code.

TIP: Also see section 3.39 to search for POI’s along a route.

int PCMSNumPOICategories(PCMServerID serv);

If searching for POI’s, use PCMSNumPOICategories() to get the number of
available POI categories in the database.

 Chapter 3: Using the PC*MILER|Connect API’s 67

int PCMSPOICategoryName(PCMServerID serv, int index,

char *buffer, int bufSize;

The above function returns the number of bytes written in the buffer. Valid index
is from 0 to return value –1.

int PCMSLocRadLookup(Trip trip, const char *city, int

radius, bool cities, bool postalCodes, bool
customPlaces, bool poi, int poiCategoryIndex));

The above function performs a search within the specified radius. Return value is
the number of items found. Using this function is currently the only way to perform
a location radius lookup in PC*MILER|Connect.

NOTE: Radius must be an INTEGER in WHOLE MILES (not tenths of miles).

int PCMSGetLocRadItem(Trip trip, int index, char

*buffer, int bufSize);

The above function gets an item found in the location radius query. Valid index is
from 0 to return value –1 of the PCMSLocRadLookup() function. Return value
is the number of bytes written in the buffer.

3.25 Report Generation and Retrieval
Once a trip’s route has been calculated, you can retrieve reports showing the route’s
information using the functions below. The reports are returned in tab delimited
lines which allow easy pasting into spreadsheets, list boxes, and grids. The
following reports are available:

• Mileage Report: When a route is run, mileage, time and cost information can

be returned in this report. The Mileage Report summarizes this information and
also includes cumulative miles by trip leg, and greenhouse gas estimates.

• Detailed Route Report: This report includes direction of travel, roads,
interchanges, times and distances, stops, and toll costs (if PC*MILER|Tolls is
installed and toll calculation is turned on). The report displays additional
information depending on the options selected when the route was run.

The columns from left to right in the Detailed Route Report give you the
following information for each route segment: state/country, toll or free road,
direction of travel, route (with exit number where available), distance, driving
time, interchange point, cumulative distance and time for the trip leg, and

 PC*MILER|Connect User’s Guide 68

cumulative distance and time for the whole trip. For each stop on the route, the
on-duty status and duration is shown. (The default for these values is on-duty
and 0 hours. Stop times and on-duty status can be set using HOS management
– see section 3.40.)

If PC*MILER|Tolls is installed and toll calculations are enabled, leg toll costs
and the corresponding toll plazas will be shown. If ETA/ETD information was
calculated, there will be an additional Stop Time column. If a hazardous
material route type was run (PC*MILER|HazMat installation is required), an
additional Restriction column will be included. See NOTE below in the
description of PCMSGetReportLine on recent formatting changes.

NOTE: Due to the way PC*MILER identifies locations and calculates routes
and distances, occasionally a toll barrier won’t be reported in the Detailed Route
Report. When this happens anywhere on a route, an alert will appear at the very
bottom of the report stating that this has occurred. You can then check all route
segments marked with a dollar sign to find the omission.

A dollar sign ($) to the left of the directional column marks segments that are
toll roads. Alerts such as height, weight, 53-Foot restrictions, K turns, no
through trucks, and geofence warnings are noted where they exist, appearing
before the pertinent road segment in the report. Geofence warnings include the
name of the road, the name of the geofence set, and the name of the individual
geofence, like this:

Warning * US-1 * : New Jersey : NewBrunswickNJ

Here are other examples of warnings that may be generated in Detailed and
Driver’s reports (see below for a description of the Driver’s Report):

Weight Restriction:
Warning * B 454 * Weight Restriction: 17999 kgs; On -
MTWTF-, From 12:00 AM to 7:00 AM, 9:00 PM to 12:00 AM.

Seasonal Road Closure:
Warning * CO-82 * Road Closed in Months Jan, Feb, Mar,
Apr, May, Nov, Dec.

Temporary Road Closure:
Warning * US-1 * Road Closed Indefinitely, Starting
14/4/2014.

One-Way (northbound for autos, 2-way for trucks and non-auto):
Warning * Sansome St * Road Closed This Way

• State/Country Summary Report: The State/Country Report lists leg and total
miles, cost, and time estimates. Leg and total toll costs will be shown if
PC*MILER|Tolls is installed and toll calculation is turned on. Leg and

 Chapter 3: Using the PC*MILER|Connect API’s 69

cumulative greenhouse gas estimates are also shown in pounds or kilograms of
carbon dioxide equivalent per gallon/liter of fuel. (Values that affect cost, time,
toll and greenhouse gas estimates can be set using trip options.) A breakdown
of the route by state/country and category is at the bottom of the report.

• Driver’s Report: This report generates easy-to-read detailed driving
instructions with turn directions and distance between turns, and driving times
that include the duration of each stop if HOS management was used for the
route. This report includes all alerts that appear in the Detailed Route Report.

int PCMSGetRptLine(Trip tripID, int rpt, int line,

char *buffer, int bufLen);

Each of the PC*MILER report types can be retrieved line by line using the above
function. Report types are defined by the constants RPT_DETAIL (Detailed),
RPT_STATE (State/Country Summary), RPT_MILEAGE (trip mileage),
RPT_RDTYPE (Road Type), and RPT_ITINERARY (Driver’s Report).

NOTE: To accommodate newer features in PC*MILER, the format of the Detailed
Route Report was adjusted. When you parse this report (RPT_DETAIL), please
take note of the following: a “Stop Time” column was inserted between the “Toll
Plaza” column (if PC*MILER|Tolls is installed) and the “Restriction” column (if
PC*MILER|HazMat is also installed). Also, a route warning related to the
geofencing capability in PC*MILER has been added.

 PCMSGetRptLine() is similar to PCMSGetMatch() described in section 3.7,
Validating City Names. You must pass in a buffer to fill with the data. The buffer
should be at least 100 characters wide in order to contain any report’s entire lines.
The function will fill it up to that length.

int PCMSNumRptLines(Trip tripID, int rpt);

Use the function PCMSNumRptLines() to find out how many lines are contained
in each report.

int PCMSGetRpt(Trip tripID, int rpt, char *buffer, int

bufLen);

long PCMSNumRptBytes(Trip tripID, int rpt);

You can also retrieve up to 64K bytes of a report (more in 32-bit) at once by using
the above functions PCMSGetRpt() and PCMSNumRptBytes(). Use the function
PCMSNumRptBytes() to find out how many bytes are contained in each report.

 PC*MILER|Connect User’s Guide 70

Below are two different ways to retrieve a report:

char buf[20000];
int lines;

/* Show detailed driving instruction for route */
/* Index lines from 0. Buffer must be > 100 char */
lines = PCMSNumRptLines(pracTrip, RPT_DETAIL);

for (i=0; i < lines; i++)
{
 PCMSGetRptLine(pracTrip, RPT_DETAIL, i, buf,100);
 printf ("%s\n", buf);
}

/* Get state by state mileage breakdown report*/
length = PCMSNumRptBytes(pracTrip, RPT_STATE);
PCMSGetRpt(pracTrip, RPT_STATE, buf, 20000);
printf(“The entire state report:\n%s\n”, buf);

long _CALLCONV PCMSGetHTMLRpt(Trip trip, int rptNum,
char FAR *buffer, long bufSize);

The above function returns a text buffer containing the specified report formatted
as HTML.

long _CALLCONV PCMSNumHTMLRptBytes(Trip trip,int
rptNum);

The above function returns the number of bytes in the HTML-formatted report.
You can also use the structure and functions below to retrieve information about
each report segment in a Detailed report. (A “report segment” is the group of report
lines within each trip leg that describe the route segments for that leg.)

NOTE: To use these functions, check that the compiler’s option for data alignment
is set to byte alignment.

struct segment Struct
{
 char stateAbbrev[2];
 BOOL toll;
 char dir[2];
 char route[32];
 int miles;
 int minutes;

 Chapter 3: Using the PC*MILER|Connect API’s 71

 char interchange[32];
};

Time estimates are returned in thousandths of hours. To convert thousandths of
hours to hours and minutes, use the following formula:

Public int ConvertDurationHours(double duration, out

longhours, out long minutes)
 {
 // Duration is stored in thousandths of an hour
 bool bLessThan0 = duration < 0;
 duration = bLessThan0 ? -duration : duration;

 double time = (double)(duration) / 1000;

 hours = (int)(time);
 minutes = (int)((60.0 * (time - hours)) + 0.5);
 if (60 == minutes)
 {
 hours++;
 minutes = 0;
 }

 hours = bLessThan0 ? -hours : hours;
 minutes = bLessThan0 ? -minutes : minutes;
 return (0);
 }

int PCMSGetSegment(Trip trip, int segNum, struct

segmentStruct *aSegment);

PCMSGetSegment() gets a report segment, line by line, from the Detailed Report
in the above structure. If the segNum equals -1, then lines for the next trip leg are
returned, else lines for the segNum are returned.

int PCMSGetNumSegments(Trip trip);

The above function gets the number of report segments in the Detailed Report.

int PCMSSetAccessRule(Trip trip, bool onOff);

To turn off warnings that appear in the Detailed and Drivers reports, use the above
function. Warnings are turned on (TRUE) by default.

 PC*MILER|Connect User’s Guide 72

3.26 Getting Trip Leg Information

NOTE: To use these functions, check that the compiler’s option for data alignment
is set to byte alignment.

int PCMSNumLegs(Trip trip);

The above function returns the number of calculated legs in a trip. That is, if you
calculate a trip with 3 stops, then add a fourth without clearing the stop list, the
number of legs is still 2, even though the number of stops is 4.

int PCMSGetLegInfo(Trip trip, int legNum, struct

legInfoType *pLegInfo);

Gets the leg information for this trip using the following structure and function:

struct legInfoType
{
 float legMiles;
 float totMiles;
 float legCost;
 float totCost;
 float legHours;
 float totHours;
};

int PCMSNumLegs(Trip trip)

int PCMSGetLegInfo(Trip trip, int legNum, struct
legInfoType *pLegInfo

The sample code below illustrates how to use this function:

int legNum;
int i;
struct legInfoType plegInfo;
int numLegs = PCMSGetNumLegs();
for(i=0; i < numLegs; i++)
 PCMSGetLegInfo(trip, legNum, &pLegInfo);

 Chapter 3: Using the PC*MILER|Connect API’s 73

3.27 Optimizing the Stop Sequence
PC*MILER|Connect can be used to optimize any sequence of stops. Optimizing a
trip is a re-ordering step which only gets done once for a given sequence of stops.
Use the functions below to optimize.

void PCMSSetResequence(Trip tripID, BOOL changeDest);

int PCMSOptimize(Trip tripID);

int PCMSCalculate (Trip tripID)

Use PCMSSetResequence() to set whether optimization can change the last
destination stop. changeDest = TRUE to change, or = FALSE to keep the same.
PCMSSetResequence() must be called before PCMSOptimize().

PCMSOptimize() can take a while to calculate because the optimization has to run
routes between every stop in the trip’s stop list before resequencing the stops. After
the optimization step, you must call PCMSCalculate() to get the new distance for
the optimized route. PCMSOptimize() returns 1 on success, 0 if the trip is already
optimized and -1 on error.

NOTE: You cannot optimize a trip with the hub mode option set (see section 3.28).
You also cannot optimize a trip with 2 or fewer stops. And, lastly, if you use
PCMSSetResequence() to set a fixed destination (changeDest=FALSE), the trip
must have at least 4 stops.

3.28 Hub Routing
Hub routing calculates routing from a central hub location to many locations (like
spokes on a wheel). Hub routing is an option that will be used on every
recalculation of a trip, just like kilometers.

void PCMSSetHubMode(Trip tripID, BOOL onOff);

Turns Hub Mode on (TRUE) or off (FALSE) when you call PCMSCalculate() for
a given trip.

 PC*MILER|Connect User’s Guide 74

3.29 Calculating Air Distance
PC*MILER|Connect is able to calculate the straight line or “air” distance between
two points. “Air” is a fifth option in all routing functions, in addition to “Shortest”,
“Practical”, “National”, and “AvoidToll”. For the air distance, points are specified
the same way as in other PC*MILER|Connect distance calculations, as a city/state,
five digit ZIP, SPLC, Canadian Postal Code, latitude/longitude, or PC*MILER
custom name.

3.30 Designating Stops As Waypoints

int PCMSSetStopAsWaypoint(Trip trip, int which, BOOL

isWaypoint);

This function enables you to add waypoints to a trip. Waypoints are used to
customize a route to travel on specific, user-designated roads. A route will travel
through a waypoint but the waypoint is not treated as a stop. Waypoints are listed
as stops in the Detailed Route and State/Country reports, but they do not appear in
driving directions in the Drivers Report. With RouteSync or CoPilot, the system
will say to stop or to drive by a waypoint.

Parameters:
Trip trip – The trip ID.

int which – The stop number.

isWaypoint –FALSE to set the stop as a waypoint, TRUE designates it as a stop.
TRUE is the default.

Return Values:
Returns 0 on success, -1 on failure.

3.31 Tracking Equipment On Roads

int PCMSCalcDistToRoute(Trip tripID, char *location);

This function can be used to determine the air distance between a given location
and the nearest point on the route. By PC*MILER convention, distances are
returned in tenths of a mile or kilometer.

 Chapter 3: Using the PC*MILER|Connect API’s 75

int PCMSAirDistToRte(Trip tripID, char *location, int

leg);

int PCMSAirDistToRte2(Trip trip, char *location, int
leg, char *dir, BOOL recalc); (deprecated in Version 29)

If the current route leg is known, PCMSAirDistToRte() can be used to determine
more exactly the air distance between a given point and the route.

3.32 Using Custom Routing

NOTE: See section 3.33 below for more custom routing options.

Use the function below to activate custom routing preferences (avoids, favors and
restriction overrides) set in the PC*MILER user interface.

void PCMSSetCustomMode(Trip trip, BOOL onOff);

The above function can be used to enable/disable custom routing programmatically.

Alternatively, this setting can be changed in the PCMSERVE.INI file (the setting
that can be added is shown below). When set to TRUE, avoided, favored, and
overridden roads set in PC*MILER will be used. The default is FALSE.

CustomRoute=FALSE

3.33 Avoid, Favor, and Override Roads From Within Connect

IMPORTANT: Custom routing preferences must be activated using the
PCMSSetCustomMode() function or the CustomRoute setting in the
PCMSERVE.INI (see section 3.32 above).

See the PC*MILER User’s Guide for a description of avoiding, favoring, and
overriding roads, and custom sets of road preferences in PC*MILER. An avoided
road segment is effectively treated as if it were a closed road unless no other link
can be used for the route. A favored segment is used unless it is not practical.

NOTE: Many states and provinces in the north central part of the North American
continent have seasonal weight limits that apply either to all commodities or to
particular commodities (such as grain) at certain times of year (harvest season,
winter, spring thaw, etc.).

 PC*MILER|Connect User’s Guide 76

In these areas, the carrier typically works with the shipper to adjust how much
material is loaded into the truck in order to max out the limit for the season in
question, rather than adjust the route traveled. So (for example) more grain would
be loaded into the truck during harvest season or winter than during spring
thaw. That is the only way to have a legal load when an origin or destination is on
a road with a seasonal limit. In addition to legal considerations there are also
practical physical considerations since many loading and unloading points in that
part of the country are on unpaved surfaces, and to overload a truck during spring
thaw risks the truck getting stuck during pickup or delivery.

In PC*MILER, we have coded the weight limit that applies to general commodities
during most seasons of the year. For situations where the low-limit road is used as
a through route rather than for pickup or delivery, sets of avoid/favor road
preferences created using the PC*MILER user interface can be used to create
avoid/favor/restriction override sets for each season of the year for each
commodity. Custom routing must be turned on (see section 3.32, Using Custom
Routing, above) to enable road preferences.

int PCMSAFActivateSet(PCMServerID server, const char*
pSetName, bool bActivate);

The above function activates/deactivates a specific Avoid/Favor set created in the
PC*MILER UI, for routing and reporting purposes using the name of the set.
Multiple sets can be active side by side.

int PCMSAFActivateRegion(PCMServerID server, const
char* pRegionID, bool bActivate);

The above function activates/deactivates a default Avoid/Favor set for a specific
region for routing and reporting purposes using the region ID given by the user.
The region ID can be Africa, Asia, Europe, ME, NA, Oceania, or SA. Multiple
sets can be active side by side.

int PCMSAFExportSet(PCMServerID server, const char*
pSetName, const char* pFilename, const char
*pDelimiter);

The above function exports detailed information for a specific Avoid/Favor set out
to a delimited text file. The name of the set determines which set is exported. All
the information fields will be delimited with a symbol of the user’s choosing. The
set does not need to be active to be exported.

 Chapter 3: Using the PC*MILER|Connect API’s 77

int PCMSAFExportRegion(PCMServerID serv, const char*
regionID, const char* pFilename, const char
*pDelimiter);

The above function exports detailed information for the default Avoid/Favor set for
a specific region to a text file. All of the information fields will be delimited with
a symbol of choice. The set does not have to be active to be exported.

3.34 Geofence Functions
The following functions are for activating and exporting data related to geofences
that have been set up in the PC*MILER user interface.

IMPORTANT NOTE – GEOFENCE AUTOSAVE OPTION: By default,
geofence data is loaded at startup as read-only, and not saved when
PC*MILER|Connect shuts down. A setting in the PCMSERVE.INI file can be
edited so that geofence data is automatically saved on shutdown. See Appendix I
and look under [ConnectOptions] in the INI.

int PCMSGeofenceActivateSet(PCMServerID serv, const
char* pSetName, int iActivate);

This function activates/deactivates a specific Geofence set for routing and reporting
purposes using the name of that set. Multiple geofence sets can be active side by
side. See NOTE at the end of this section.

int PCMSGeofenceExportSet(PCMServerID serv, const
char* pSetName, const char* pFilename, const char
*pDelimiter);

This function exports detailed information for a specific Geofence set out to a
delimited text file. The name of the set determines which set is exported. All the
information fields will be delimited with a symbol of the user’s choosing. The set
does not have to be active to be exported.

3.35 Using Custom Places
PC*MILER|Connect recognizes custom places created in PC*MILER. The function
below can be used to enable/disable translation of custom place names into their
original PC*MILER names in reports. When enabled (translate = TRUE), the
PC*MILER place name or lat/long pair will be displayed along with the custom place
name. When disabled, only the custom place name will be displayed.

 PC*MILER|Connect User’s Guide 78

NOTE: Before Connect will recognize a custom place created or changed in
PC*MILER, the PC*MILER application must be exited and the Connect engine
restarted. This will cause PC*MILER to write the updated custom places to disk
and the Connect engine to read the updated file.

void PCMSTranslateAlias(Trip trip, BOOL translate);

The function below assigns a custom place name to a PC*MILER location and adds
it to the PC*MILER database. Once added, the custom place name can be used as
a stop on a trip. For example, the name “Warehouse1” can be assigned to the
address “450 Ridge Road, Dayton, NJ”. This is the functional equivalent of the
custom place feature in the PC*MILER user interface.

int PCMSAddCustomPlace(PCMServerID serv, const char

*name, const char *location);

int PCMSDeleteCustomPlace(PCMServerID serv, const char
*name);

Parameters:
PCMServerID serv – The server ID.

const char *name – A user-specified custom name.

const char *location – Actual location in the PC*MILER database. Can be any
format that PC*MILER recognizes (city/state, postal code, address, lat/long, etc.)

Return Values:
Returns 0 on success, -1 on failure.

3.36 Enabling Hazardous Routing From Your Application

NOTE: See your PC*MILER User’s Guide for details about each HazMat routing
type. To set a default for the PCMSSetHazOption() value, use the HazRoute=
setting in the PCMSERVE.INI file, [Options] section.

(The PC*MILER|HazMat data module must be licensed and installed.) To generate
routing for hazardous materials, you must have the PC*MILER|HazMat data
module installed. You can change the setting temporarily by calling the function
PCMSSetHazOption(). If tunnel restrictions categories are included for hazmat
routing in Europe, also use PCMSSetHazTunnelOption() (see values below for
both functions).

 Chapter 3: Using the PC*MILER|Connect API’s 79

void PCMSSetHazOption (Trip trip, int hazType);

where hazType values in North America can be as follows:

Value Route Type:
0 Disabled
1 General* (see NOTE below)
2 Explosive
3 Inhalant
4 Radioactive
5 Corrosive
6 Flammable

where hazType values in Europe and Oceania can be as follows:

Value Route Type:
0 Disabled
1 General* (see NOTE below)
2 Explosive
6 Flammable
7 HarmfultoWater

NOTE: The name for the General hazmat route type has been changed in the
PC*MILER UI to “Other”. They are identical route types and algorithms.

void PCMSSetHazTunnelOption (Trip trip, int hazType);

where hazType values in Europe can be as follows (cannot be set in the
PCMSERVE.INI):

Value Route Type:
0 None
8 HazType_EUTunnelBCDE
9 HazType_EUTunnelCDE
10 HazType_EUTunnelDE
11 HazType_EUTunnelE

 PC*MILER|Connect User’s Guide 80

3.37 Using PC*MILER|Energy Data
(The PC*MILER|Energy map data set must be purchased and installed.) To use
PC*MILER|Energy data, you need to change the map data set to NA – Streets
U.S./Canada Energy in the PC*MILER user interface using the Change Data Set
option (Map tab > Utilities group > Change Data Set). North America must be set
as the default region – see section 3.10 if the default region for PC*MILER|Connect
needs to be restored to North America.

Additionally, PC*MILER|Streets must be purchased and installed, and street-
level routing must be turned on (by default, PC*MILER|Connect is configured
to run in highway-only mode). It is suggested that you use the function
PCMSSetRouteLevelAPI() to activate street-level routing – see section 3.18. The
following sample shows what you need for an integration:

PCMServerID server = PCMSOpenServer(NULL, NULL);
// NOTE: OpenServer and CloseServer should be executed
sparingly due to excess overhead.
Trip trip = PCMSNewTrip(server);
PCMSSetRouteLevel(trip, TRUE); // turn streets on
PCMSAddStop(trip,"Philadelphia, PA");
PCMSAddStop(trip,"Hamilton, NJ");
PCMSAddStop(trip,"Manhattan,NY");
PCMSSetCalcType(trip, CALC_AVOIDTOLL);
PCMSSetCalcType(trip, CALC_FIFTYTHREE);
PCMSCalculate(trip);

3.38 Converting Lat/Longs To Obtain Trip Information
The functions described below process latitude/longitudes to obtain trip
information. They were created for PC*MILER|FuelTax users and for use by any
external programs that calculate distances between GPS pings (for example, third-
party automated driver log programs or fuel tax programs).

It might sometimes happen that a vehicle’s GPS signal “drifts” and does not
accurately reflect the roadway the vehicle actually traveled on when a parallel road
exists nearby.

To ensure the accuracy of trip information that relies on GPS data, it is
recommended that you calculate the distance of strings of GPS pings either 1) using
the function PCMSReduceTrip(), or 2) using a combination of the functions
PCMSAddPing() and PCMSReduceCalculate().

 Chapter 3: Using the PC*MILER|Connect API’s 81

int PCMSReduceTrip(PCMServerID serverID, const char

*FilePath, int ColTruckId, int ColTruckIdLen, int
ColTime, int ColTimeLen, int ColDate, int
ColDateLen, int ColLatLong, int ColLatLongLen,
int HourWindow, double dMaxMilesOffRoute, bool
bHighwayOnly;

PCMSReduceTrip() allows PC*MILER|Connect to receive a large file containing
latitude/longitude points and derive trip information from it for use with external
programs that calculate distances between GPS pings.

Parameters:
PCMServerID serverID – A valid PC*MILER server ID.

const char *FilePath – The path/file name of the Qualcomm file containing the
trip information to be input.

int ColTruckID and int ColTruckIdLen – The starting column (counting from 1)
and the number of characters of the truck ID field in the input file.

int ColTime and int ColTimeLen – The starting column and number of characters
in the time column of the input file. Used to calculate “layovers”.

int ColDate and int ColDateLen – The starting column and number of characters
in the date column which contains the datestamp associated with the readings. This
will be put on the report and is not used in calculations.

int ColLatLong and int ColLatLongLen – The starting column and number of
characters in the lat/long column which contains the lat/long readings for the trip.

int HourWindow – This parameter is given by the user to define the number of
hours after the start of a trip that force a break and new trip.

double dMaxMilesOffRoute – Defines the number of miles lat/long tracks can
deviate from the calculated route before the route is recalculated. Default is 2.0.

bool bHighwayOnly – Corresponds to the trip option: TRUE will use highway
only routing, while FALSE will use local streets (defaults to TRUE).

Note the following in relation to this function:

1. Any stop over the number of hours input for the same truck ID is considered
a new trip.

2. The output file name will be [input File].STA
3. The output file will contain a header of truck ID, start date, and end date –

that will be followed by what amounts to the output of the state report
(minus its header and footer), i.e. miles and states.

 PC*MILER|Connect User’s Guide 82

int PCMSAddPing(Trip trip, char* tripLatLon);

long PCMSReduceCalculate(Trip trip, double
maxMilesOffRoute, bool highwayOnly);

PCMSAddPing() allows a direct programmatic interface to the
PCMSReduceTrip() functionality that was introduced in PC*MILER Version 20.
PCMSAddPing() is an alternative to PCMSReduceTrip() that enables you to enter
latitude/longitude points directly into PC*MILER|Connect without having to read
them from a file first.

Parameters:
Trip trip – The identifier associated with the trip.

Char* tripLatLon – A lat/long pair separated by a comma.

PCMSReduceCalculate() lets you calculate a trip based on the lat/long pings
added with PCMSAddPing(). Once the trip has been calculated, the information
can be retrieved using the standard PCMSGetRpt() and PCMSGetRptLine() API’s.

NOTE: PCMSReduceCalculate() is meant to reduce the number of pings in a
trip, ideally one way but can usually handle round trips. When pings from multiple
trips are added, the accuracy is reduced.

Parameters:
Trip tripID – The identifier associated with this trip.

int maxMilesOffRoute – The “window” around a route within which the pings
must exist to be defined as still being on that route (outside this window the route
will detour).

bool highwayOnly – True for highway routing or False for street-level routing.

NOTE: Since PCMSAddPing() and PCMSReduceCalculate() are alternate
methods to PCMSReduceTrip(), we recommend calling the API’s in the following
order: first call PCMSAddPing(), then PCMSReduceCalculate(), then use the
standard report API’s to generate the route.

 Chapter 3: Using the PC*MILER|Connect API’s 83

3.39 Find POI’s Along a Route (FPAR)

IMPORTANT: PC*MILER|Streets for U.S. Streets must be licensed and installed,
and Streets routing must be enabled using the PCMSSetRouteLevel API or the
PCMSERVE.INI.

The following API’s can be used to search for points of interest (POI’s), including
fuel stops, along a route. If PC*MILER|Streets is not installed, an error code
specific to that issue will be returned. A second requirement is that at least one stop
on the route must be within U.S. borders.

These API’s can be used as part of a tool box for creating an Hours of Service
(HOS) management system, in conjunction with the Hours of Service API’s
covered in section 3.40.

int PCMSGetNumFPARPOICategories(PCMServerID server)

Gets the number of POI categories available for use in FPAR searches.

Parameters:
PCMServerID server – Valid Connect server ID.

Return Values:
A negative one (-1) indicates an error has occurred.
PCMSGetError() and PCMSGetErrorString() can be used to retrieve the detailed
error code and message if desired. Greater than zero indicates the number of POI
ategories available.

int PCMSGetFPARPOICategoryName(PCMServerID server, int
poiCatIndex, char* buffer, int bufSize)

The above function gets the name of a specific FPAR POI category based on an
index value.

Parameters:
PCMServerID server – Valid Connect server ID.

int poiCatIndex – Index of the POI category (see section 3.40.1 for values).

char* buffer – Empty string buffer that will be filled with the name of the POI
category.

int bufSize – Available size of the buffer.

 PC*MILER|Connect User’s Guide 84

Return Values:
A negative one (-1) indicates an error has occurred.
PCMSGetError() and PCMSGetErrorString() can be used to retrieve the detailed
error code and message if desired. Zero or greater indicates success and the number
of characters put into the buffer.

int PCMSFindPOIsAlongRoute(Trip trip, float start,
float end, bool bDistanceSearch, int sortOrder,
float offRouteDistThreshold, const int*
pPOITypes, int numPOITypes)

NOTE for HOS Compliance: If you are searching for rest stops, please note that
PCMSAddStop() by default adds stops that are On Duty, with stop type=NONE.
You will need to change the stop options after PCMSAddStop() for a stop to be
HOS-compliant. Use PCMSSetStopOptions() with onDuty set to FALSE and
stopType set to 3 (rest stop).

The above API finds POI’s that are along the specified route. The search is
conducted within a user specified window along the route. The start and end points
of this window can be specified in distance or time along the route. The user can
also specify what type of POI’s to search for.

The search will filter the POI list by how far off route POI’s are. By default, only
POI’s that are less than or equal to 5 miles off route will be included in the final
result list (5 driven miles, not air miles, off route). This off route distance is
configurable by the end user.

The performance of this API can vary greatly depending on how wide the search
window is and how many different types of POI’s you are trying to find. Smaller
more focused searches can take seconds while searches along long routes for lots
of POI types can take upwards of a minute.

Parameters:
Trip trip – The ID of the trip to search along. The trip must be run prior to
executing the search.

float start – The start point of the search window. This is either a distance in miles
or time in minutes.

float end – The end point of the search window. This is either a distance in miles
or time in minutes.

bool bDistanceSearch – Tells whether the start and end points are distances or
times. True = distances, False = time in minutes.

int sortOrder – Determines how the result list will be sorted.

 Chapter 3: Using the PC*MILER|Connect API’s 85

0 = Distance from the trip’s origin.
1 = Drive time from the trip’s origin.

float offRouteDistThreshold – Sets the off route distance threshold to use when
filtering the POI list. The default setting is 5 miles. If you want to keep the default
value, set this parameter to zero or a negative number. Any value greater than zero
will be accepted as the new off route distance threshold.

const int* pPOITypes – An array of POI type identifiers to be included in the
search. To get the index values, use PCMSGetNumFPARPOICategories() and
PCMSGetFPARPOICategoryName().

int numPOITypes – The number of POI types in the array.

Return Values:
A negative value indicates an error has occurred. PCMSGetError() and
PCMSGetErrorString() can be used to retrieve the detailed error code and message
if desired. Zero (0) indicates no POI’s of the specified types were found within the
start and end points along the route. A positive value is the number of results found.

int PCMSFindPOIsAlongRoute2(Trip trip, int legIndex,
int sortOrder, float offRouteDistThreshold, const
int* pPOITypes, int numPOITypes)

NOTE for HOS Compliance: If you are searching for rest stops, please note that
PCMSAddStop() by default adds stops that are On Duty, with stop type=NONE.
You will need to change the stop options after PCMSAddStop() for a stop to be
HOS-compliant. Use PCMSSetStopOptions() with onDuty set to FALSE and
stopType set to 3 (rest stop).

The above function finds POI’s that are along the specified leg of the given route.
The search is conducted along the entire leg given by the user. The user can also
specify what type of POI’s to search. The search will filter the POI list by how far
off route POI’s are. By default only POI’s that are less than or equal to 5 miles off
route will be included in the final result list (5 driven miles, not air miles, off route).
This off route distance is configurable by the end user.

Performance of this API can vary greatly depending on how wide the search
window is and how many different types of POI’s you are trying to find. Smaller
more focused searches can take seconds while searches along long routes for lots
of POI types can take upwards of a minute.

Parameters:
Trip trip – The ID of the trip to search along. The trip must be run prior to
executing the search.

 PC*MILER|Connect User’s Guide 86

int legIndex – Index of the leg to conduct the search along.

int sortOrder – Determines how the result list will be sorted.
 0 = Distance from the trip’s origin.
 1 = Drive time from the trip’s origin.

float offRouteDistThreshold – Sets the off route distance threshold to use when
filtering the POI list. The default setting is 5 miles. If you want to keep the default
value, set this parameter to zero or a negative number. Any value greater than zero
will be accepted as the new off route distance threshold.

const int* pPOITypes – An array of POI type identifiers to be included in the
search. To get the index values, use PCMSGetNumFPARPOICategories() and
PCMSGetFPARPOICategoryName().

int numPOITypes – The number of POI types in the array.

Return Values:
A negative value indicates an error has occurred. PCMSGetError() and
PCMSGetErrorString() can be used to retrieve the detailed error code and message
if desired. Zero (0) indicates no POI’s of the specified types were found along this
leg of the route. A positive value is the number of results found.

int PCMSGetPOIAlongRouteResult(Trip trip, int result,

char* stopBuffer, int bufSize, int*
distanceFromOrigin, int* timeFromOrigin, float*
pFuelPrice , char* amenityBuffer, int
amenityBufSize)

The above function gets a POI along route search result. The user is given a fully
geocodable stop string that can be used to add this POI to a route. They are also
given the POI’s calculated distance from the origin and time in minutes from the
origin. Note that the parameter distanceFromOrigin returns Miles x 1000. For
example, if the trip is 20.3 miles, distanceFrom Origin will return “20300”.

Parameters:
Trip trip – ID of the trip you are getting the result from.

int result – Index of the result.

char* stopBuffer – Character buffer that will be filled with the geocodable stop
string for the POI.

int bufSize – Size of the character buffer.

int* pDistanceFromOrigin – Integer where this POI’s distance from the trip’s
origin will be put. This distance is the total driving distance to get to this POI, not
an air distance.

 Chapter 3: Using the PC*MILER|Connect API’s 87

int* pTimeFromOrigin – Integer where this POI’s time in minutes from the trip’s
origin will be put. The time from origin is only calculated when the search was
executed with “Time From Origin” sort order. This is a performance-saving
measure. Otherwise the time defaults to zero.

float* pFuelPrice – Floating point value where the POI’s fuel price (if it has one)
will be put. Fuel prices are only provided on specific POI’s with specific fuel
providers in North America. If we do not have a valid fuel price for a POI we will
provide a value of -1.

char* amenityBuffer – A string that will be filled with the list of amenities this
POI has. Not all POI’s will have an amenity list. Those that do will return a pipe
(“|”) delimited list of amenities that are available. See section 3.40.1 below for a
list of possible amenities.

int amenityBufSize – Size of the amenity buffer.

Return Values:
Zero (0) indicates successful retrieval of the requested POI. A negative value
indicates an error has occurred. PCMSGetError() and PCMSGetErrorString() can
be used to retrieve the detailed error code and message if desired.

int PCMSGetFuelProviders(PCMServerID server, char*

buffer, int bufSize)

The above function gets a pipe (“|”) delimited list of fuel providers that can be used
to filter calls to PCMSFindFuelStopsAlongRoute. This list will always
contain at least one entry called “Other”. This is a generic entry that is used to
represent any POI that is a known fuel stop but isn’t matched with a specific fuel
provider in the database.

Parameters:
PCMServerID server – Valid Connect server ID.

char* buffer – Empty string buffer that will be filled with a pipe (“|”) delimited
list of fuel provider names that are currently supported.

int bufSize – Available size of the buffer.

Return Values:
Negative value indicates an error has occurred. PCMSGetError() and
PCMSGetErrorString() can be used to retrieve the detailed error code and message
if desired. Otherwise the number of characters in the provided string buffer will be
returned. If the buffer passed in is NULL, the size of the buffer required to contain
the data we have will be returned.

 PC*MILER|Connect User’s Guide 88

int PCMSFindFuelStopsAlongRoute(Trip trip, float

start, float end, bool bDistanceSearch, int
sortOrder, float offRouteDistThreshold, const
char* pFuelProviders)

The above function finds fuel stop POI’s that are along the specified route. The
search is conducted within a user specified window along the route. The start and
end points of this window can be specified in distance or time along the route. This
is a specialized FPAR operation that will only look for Fuel Stop POI’s.

The user can filter the POI’s by fuel provider name if desired. The search will filter
the POI list by how far off route POI’s are. By default only POI’s that are less than
or equal to 5 miles off route will be included in the final result list (5 driven miles,
not air miles, off route). This off route distance is configurable by the end user.

Performance of this API can vary greatly depending on how wide the search
window is and how many different types of POI’s you are trying to find. Smaller
more focused searches can take seconds while searches along long routes for lots
of POI types can take upwards of a minute.

PCMSGetPOIAlongRouteResult() is used to retrieve the results of this search.

Parameters:
Trip trip – The ID of the trip to search along. The trip must be run prior to
executing the search.

float start – The start point of the search window. This is either a distance in miles
or time in minutes.

float end – The end point of the search window. This is either a distance in miles
or time in minutes.

bool bDistanceSearch – Tells whether the start and end points are distances or
times. True = distances, False = time in minutes.

int sortOrder – Determines how the result list will be sorted.
0 = Distance from the trip’s origin
1 = Drive time from the trip’s origin

float offRouteDistThreshold – Sets the off route distance threshold to use when
filtering the POI list. The default setting is 5 miles. If the user wants to keep the
default value, set this parameter to zero or a negative number. Any value greater
than zero will be accepted as the new off route distance threshold.

const char* pFuelProviders – A pipe (“|”) delimited string of fuel provider names
used to filter the results list. Valid fuel provider names can be obtained by calling
PCMSGetFuelProviders().

 Chapter 3: Using the PC*MILER|Connect API’s 89

Return Values:
A negative one (-1) indicates an error has occurred.
PCMSGetError() and PCMSGetErrorString() can be used to retrieve the detailed
error code and message if desired. Zero (0) indicates no POI’s of the specified
types were found within the start and end points along the route. A positive value
is the number of results found.

int PCMSFindFuelStopsAlongRoute2(Trip trip, int
legIndex, int sortOrder, float
offRouteDistThreshold, const char*
pFuelProviders)

The above function finds fuel stop POI’s that are along the specified leg of the given
route. The search is conducted along the entire leg given by the user. The start and
end points of this window can be specified in distance or time along the route. This
is a specialized FPAR operation that will only look for Fuel Stop POI’s.

The user can filter the POI’s by fuel provider name if desired. The search will filter
the POI list by how far off route POI’s are. By default only POI’s that are less than
or equal to 5 miles off route will be included in the final result list (5 driven miles,
not air miles, off route). This off route distance is configurable by the end user.

Performance of this API can vary greatly depending on how wide the search
window is and how many different types of POI’s you are trying to find. Smaller
more focused searches can take seconds while searches along long routes for lots
of POI types can take upwards of a minute.

PCMSGetPOIAlongRouteResult() (described above) is used to retrieve the
results of this search.

Parameters:
Trip trip – The ID of the trip to search along. The trip must be run prior to
executing the search.

int legIndex – Index of the leg to conduct the search along.

int sortOrder – Determines how the result list will be sorted.
 0 = Distance from the trip’s origin.
 1 = Drive time from the trip’s origin.

float offRouteDistThreshold – Sets the off route distance threshold to use when
filtering the POI list. The default setting is 5 miles. If the user wants to keep the
default value, set this parameter to zero or a negative number. Any value greater
than zero will be accepted as the new off route distance threshold.

 PC*MILER|Connect User’s Guide 90

const char* pFuelProviders – A pipe (“|”) delimited string of fuel provider names
used to filter the results list. Valid fuel provider names can be obtained by calling
PCMSGetFuelProviders().

Return Values:
A negative value indicates an error has occurred. PCMSGetError() and
PCMSGetErrorString() can be used to retrieve the detailed error code and message
if desired. Zero (0) indicates no POI’s of the specified types were found along this
leg of the route. A positive value is the number of results found.

3.39.1 POI Types and Amenities

POI Type Index:

The table below of values for POI types is for reference only. Users should use the
PCMSGetNumFPARPOICategories() and PCMSGetFPARPOICategoryName()
API’s to dynamically retrieve this list, as it is possible this list will change between
releases.

POI Type Name ID
Custom* 0
Custom Place* 1
Rest Area 2
Truck Stop 3
Truck Services 4
Vehicle Repair 5
Parking 6
Weigh Station 7
CAT Scales 8
Distribution Center 9
Intermodal Ramp 10
LCV Lot 11
Highway Exit 12
Airport 13
Hotel or Motel 14
Event Facility 15
Emergency & Medical 16
Schools & Universities 17

* “Custom” includes only custom places that were created using the default

category; “Custom Places” includes all other custom place categories.

 Chapter 3: Using the PC*MILER|Connect API’s 91

POI Amenity List:

A Truck Stop or Rest Area POI may have one or more of the amenities listed below.

Fuel Scale
Open 24 Hours Showers
10-Hour Parking Truck Wash
Truck Parking Truck Repair
ATM Tire Service
DEF Fuel Tire Pass
Hotel Nearby Roadside Assistance
Laundry Picnic Area
Permit Service Restrooms
Restaurant

3.40 Hours of Service (HOS) Management

IMPORTANT: PC*MILER|Streets for U.S. Streets must be licensed and installed,
and Streets routing must be enabled to use this functionality using the
PCMSSetRouteLevel() API or the PCMSERVE.INI.

NOTE – SAMPLE CODE: Sample code for using HOS functions with ETA/ETD
can be found in the Connect installation folder, usually C:\ALK
Technologies\PCMILER31\ Connect\C_CPP\StaticLink\pcmstest_hos.cpp.

The functions described below, in conjunction with the API’s in section 3.39 for
POI searches along a route, can be used as a tool box to build your own HOS
management system.

These API’s were designed to validate whether a trip conforms to the rules that
PC*MILER uses for HOS management of a route. If it does not conform, a report
is generated that specifies where off duty stops are needed along a route to comply
with PC*MILER HOS rules. Users can then determine which stops to insert along
a route and at what point to insert them. The trip validation process can be repeated
until compliance with the HOS rules is confirmed.

int PCMSSetStopOptions(Trip trip, int stopIndex, bool

onDuty, int stopDuration, int stopType)

The above function sets advanced stop information for a specific stop in a trip.

Parameters:
Trip trip – ID of the trip being modified.

 PC*MILER|Connect User’s Guide 92

int stopIndex – Index of the stop being modified.

bool onDuty – Sets the On Duty status of this stop.

True = on duty, False = off duty.

int stopDuration – Time in minutes that the driver will remain at this stop.

int stopType – Identifier for what kind of stop is being made. Should be an integer
value of 0 through 4 which have the following representations:
0 = None, 1 = Pickup, 2 = Drop off, 3 = Rest stop, 4 = Fuel stop.

Return Values:
This API will return zero (0) upon success. A negative one (-1) will be returned if
an error has occurred. PCMSGetError() and PCMSGetErrorString() can be used to
retrieve the detailed error code and message if desired.

int PCMSGetStopOptions(Trip trip, int stopIndex, bool*
pOnDuty, int* pStopDuration, int* pStopType)

The above function gets the advanced stop information for a specific stop in a trip.
By default all stops will be set to on duty, zero duration, and be of type “None”.

Parameters:
Trip trip – ID of the trip.

int stopIndex – Index of the stop.

bool* pOnDuty – Stores the On Duty status of this stop.

True = on duty, False = off duty.

int* pStopDuration – Stores the time in minutes that the driver will remain at this
stop.

int* pStopType – Stores the identifier for what kind of stop is being made. Should
be an integer value of 0 through 4 which has the following representations:
0 = None, 1 = Pickup, 2 = Drop off, 3 = Rest stop, 4 = Fuel stop.

Return Values:
This API will return zero (0) upon success. A negative one (-1) indicates an error
has occurred. PCMSGetError() and PCMSGetErrorString() can be used to retrieve
the detailed error code and message if desired.

int PCMSSetHOSWeekSchedule(Trip trip, int

weekScheduleType)

The above function sets a 60-hour or 70-hour duty limit.

 Chapter 3: Using the PC*MILER|Connect API’s 93

Parameters:
Trip trip – ID of the trip being modified.

int weekScheduleType – 0 = 60-hour schedule (default), 1 = 70-hour schedule.

Return Values:
This API will return zero (0) upon success. A negative one (-1) indicates an error
has occurred. PCMSGetError() and PCMSGetErrorString() can be used to retrieve
the detailed error code and message if desired.

int PCMSSetHOSAvailableTime(Trip trip,
 drivingTimeUntilRestBreakinMinutes,
 drivingTimeUntilEODinMinutes,
 onDutyTimeUntilEODinMinutes,
 onDutyTimeUntilEOWinMinutes)

The above function sets the HOS time available at the origin of the trip. This API
will only work for trips that contain at least one stop in the US. If this function is
used with a trip not containing any stops in the US a specific error code will be
returned (see section 3.40.1 below). The times provided will be validated to ensure
all time values properly coform to the HOS ruleset.

Parameters:
Trip trip – ID of the trip being modified.

drivingTimeUntilRestBreakinMinutes – Time in minutes of continuous drive
time the driver has left before a 30-minute rest break is required. A hard limit of
480 minutes (8 hours) will be enforced for this value.

drivingTimeUntilEODinMinutes – Time in minutes of total drive time the driver
has left in their work day before a 10-hour break is required. A hard limit of 660
minutes (11 hours) will be enforced for this value.

onDutyTimeUntilEODinMinutes – Time in minutes of total on duty time the
driver has left in their work day before a 10-hour break is required. A hard limit of
840 minutes (14 hours) will be enforced for this value.

onDutyTimeUntilEOWinMinutes – Time in minutes of total on duty time the
driver has left in their work week before a 34-hour break is required. A hard limit
of 3600 or 4200 minutes will apply, depending on the 60/70 hour schedule set with
PCMSSetHOSWeekSchedule().

Return Values:
This API will return zero (0) upon success. A negative one (-1) indicates an error
has occurred. PCMSGetError() and PCMSGetErrorString() can be used to retrieve
the detailed error code and message if desired. See section 3.40.1 below for HOS-
specific detailed error codes.

 PC*MILER|Connect User’s Guide 94

int PCMSValidateRouteHOS(Trip trip)

The above function analyzes the given trip and determines if it is HOS compliant.
If the route is not HOS compliant an HOS report will be generated. This report will
provide details about where along the route off duty stops are required in order to
satisfy the HOS ruleset.

IMPORTANT: If Hub routing is enabled, this function will generate an error
message. It is NOT recommended to generate a Hub route when HOS management
is enabled.

Performance of this API will vary based on how long/complex the route is.
Extremely long routes will obviously take longer to validate.

Parameters:
Trip trip – ID of the trip being analyzed.

Return Values:
Zero (0) indicates that the route is HOS compliant. A negative one (-1) indicates
that an error has occurred. PCMSGetError() and PCMSGetErrorString() can be
used to retrieve the detailed error code and message if desired. See section 3.40.1
below for HOS-specific detailed error codes.
Greater than zero indicates that the route is not HOS compliant. The number
provided is the number of off duty stops that need to be added to the route to make
it HOS compliant.

int PCMSGetHOSRouteReport(Trip trip, char* buffer, int

bufSize)

The above function gets the full HOS report for a given trip. If the route is HOS
compliant then the report buffer will be left empty. Otherwise the report will
contain one line for each location in the trip where an off duty stop needs to be
inserted. Each line will contain the following information:

1) Time along the route in minutes that an HOS stop must occur by. The actual

computed drive time to get to a stop must be less than or equal to this value.
For example, if the value is 480 that means an off duty stop must be inserted
such that it takes less than or equal to 480 minutes (8 hours) to reach.

a. This value can be used as the end value of an FPAR search window (see
section 3.39) to find a set of POI’s along the route that could be used as
the required stop.

b. The user can define the starting point of that window. We recommend
setting it to at least one hour before the end value to account for
unexpected delays along the route.

 Chapter 3: Using the PC*MILER|Connect API’s 95

2) Minimum duration, in minutes, of the off duty stop required to satisfy the
HOS rules. For example, if the value is 30, the stop duration must be at least
30 minutes of off duty time to satisfy the HOS rules.

An example of the report is: "427,30|603,600|1044,30|1205,600".

Rest stops are separated by a pipe “|”.

Each stop has two numbers separated by a comma “,”. The first number is the rest
stop that should be inserted, as indicated by the time along the route in minutes.
(Note that this is an estimated time, it may change after the stop is inserted and the
route is run.) The second number is the stop duration (in minutes).

NOTE: If the search for POI’s along a route doesn’t find any rest stops, the user
should pick rest stops to make the route HOS compliant. In this case, the
PC*MILER user interface returns latitude/longitudes along the route at HOS-
compliant time intervals.

Parameters:
Trip trip – ID of the trip to get the report for.

char* buffer – An empty, allocated string buffer that will be filled up with the HOS
report.

int bufSize – Size of the buffer.

Return Values:
A negative value indicates an error has occurred – see section 3.40.1 below for
HOS-specific error codes. Any other return values indicate how many characters
of the HOS report were put into the buffer. If the provided buffer was NULL, the
number of characters in the full HOS report will be returned.

3.40.1 HOS-Specific Detailed Error Codes

Error Name Error Code Error Message

PCMS_HOS_TRIP_NO_US_STOPS -200 “The trip does not contain any stops
in the United States.”

PCMS_HOS_TRIP_NOT_VALIDATED -201 “The trip has not been validated
using PCMSValidateRouteHOS()”

PCMS_HOS_CDT_ABOVE_MAX -202 “The Consecutive Drive Time is
above the maximum allowed value”

PCMS_HOS_TDT_ABOVE_MAX -203 “The Total Drive Time is above the
maximum allowed value”

 PC*MILER|Connect User’s Guide 96

PCMS_HOS_TODT_ABOVE_MAX -204 “The Total On Duty Time is above
the maximum allowed value”

PCMS_HOS_CDT_BELOW_MIN -205 “The Consecutive Drive Time is
below the minimum allowed value”

PCMS_HOS_TDT_BELOW_MIN -206 “The Total Drive Time is below the
minimum allowed value”

PCMS_HOS_TODT_BELOW_MIN -207 “The Total On Duty Time is below
the minimum allowed value.”

PCMS_HOS_ETDT_ABOVE_MAX -208 “The Estimated Total Drive Time is
above the maximum allowed value.”

PCMS_HOS_ETODT_ABOVE_MAX -209
“The Estimated Total On Duty Time
is above the maximum allowed
value.”

PCMS_HOS_TRIP_HUB_MODE_ON -210 “Hub mode is on” (HOS for hub
routing is not supported)

PCMS_HOS_TRIP_ HWY_ON -211 “Highway is on” (Streets routing
must be enabled for HOS routes)

3.41 PC*MILER|Connect Error Handling
The only functions callable without a server ID are the error handling routines.
They can be used to diagnose why the engine didn’t initialize. These functions
relate to the last error encountered by PC*MILER|Connect. They can be used to
diagnose any runtime problems while using your application’s interface to
PCMSRV32.

Functions that accept pointer arguments have been updated to check for valid
pointers. The error state is set to PCMS_INVALIDPTR for invalid pointers.

PC*MILER|Connect functions return -1 on errors. To find out what went wrong
with the function call, use PCMSGetError() to determine the cause of the error.
See Appendix B for error codes that PC*MILER|Connect generates.

int PCMSGetError();

int PCMSGetErrorString(int errCode, char *buffer,
int bufLen);

int PCMSIsValid(PCMServerID serverID); (deprecated in Version 29)

int PCMSGetErrorEx(Trip trip, char *buffer, int len);

PCMSGetError() returns the number of the last error the engine caught. There are
constants defined for each of the possible errors in pcmsdefs.h (usually in C:\ALK
Technologies\PCMILER31\Connect\C_CPP\StaticLink\pcmsrv32).

 Chapter 3: Using the PC*MILER|Connect API’s 97

PCMSGetErrorString() will get the associated error text from
PC*MILER|Connect’s resources. It returns the number of characters copied into
the buffer.

PCMSGetErrorEx() can be called when error code 114 (calculation failed, portions
of trip are invalid) has been returned. Generates a string indicating at which stop in the
trip the error occurred.

Here is an example of how to sanity check the initialization of the engine and the
creation of a new trip:

PCMServerID server;
Trip shortTrip;
void Initialize ()

{
 int errorCode;
 char buffer[100];

 /* Open a connection to the server */
 serverID = PCMSOpenServer(NULL, NULL);
 if (!serverID)
 {
 /* Print the error if we couldn't initialize */
 PCMSGetErrorString(PCMSGetError(), buffer, 100);
 printf ("Could not initialize: %s\n", buffer);
 return;
 }

 /* Create a new trip */
 shortTrip = PCMSNewTrip(server);

 /* Error handling */
 if (0 == shortTrip)
 {
errorCode = PCMSGetError();
 printf ("Could not create a trip:");
 printf ("%s\n", PCMSGetErrorString(errorCode,
 buffer, 100));
 return;
 }
}

 PC*MILER|Connect User’s Guide 98

PC*MILER|RouteMatrix API’s

NOTE: In order to take advantage of the RouteMatrix functionality, both
PC*MILER|Connect and PC*MILER|RouteMatrix must be purchased, installed
and licensed.

The PC*MILER|RouteMatrix API’s in PC*MILER|Connect efficiently calculate
travel time and distance between all possible pairs of points in a set of locations,
taking advantage of the functionality of multi-processor CPUs by using multiple
cores at the same time. The RouteMatrix feature is a powerful tool for load
planning, scheduling and stop optimization that can be used for numerous carrier,
shipper and third party logistics applications via their own custom integrations or
within third party transportation management systems.

The PC*MILER|RouteMatrix functionality in PC*MILER|Connect provides the
ability to calculate an N X N trip matrix efficiently. It enables users to create a
stop list with “n” number of stops and have a vector of information returned that
includes mileage, travel time, and tolls information (if PC*MILER|Tolls is
licensed).

When using the old classic PC*MILER|Connect functions, an integrator would
create a matrix by calling our PCMSAddStop() for every possible origin-
destination pair. For example, to create an optimized matrix based on distance for
100 delivery locations, previously the integrator would call our older
PCMSAddStop function 10,000 times and this was an expensive operation.

When using RouteMatrix, the integrator only needs to call
PCMSMatrixAddStop() 100 times. RouteMatrix efficiently sorts the possible
pairs by distance, calculating 10,000 origin-to-destination distances and travel
times on multiple cores and threads. Although they are still useful, the older
PC*MILER|Connect functions do not take advantage of multiple cores and threads.

The PC*MILER|RouteMatrix API’s are listed and described below.

Currently all RouteMatrix functions return an integer return code. A value
returned as -1 indicates that the product is not licensed for RouteMatrix. We
may expand this return code in the future.

NOTE: The travel times or trip duration calculated by RouteMatrix is in
thousandths of hours. To convert to hours and minutes, see section 4.1,
RouteMatrix Sample Code.

4 C
ha

pt
er

 Chapter 4: PC*MILER|RouteMatrix API’s 99

int PCMSMatrixAddStop(const char FAR *stop);

The above function geocodes the given stop information string. If geocoding is
successful, that stop will be added to the stop list for the trip matrix. If a trip matrix
has already been calculated, adding new stops will require a full rerun of the entire
trip matrix in order to calculate the new data.

int PCMSMatrixAppendStop(const char FAR *stop);

The above function geocodes the given stop information string. If geocoding is
successful, that stop will be appended to the stop list for the trip matrix. Appending
is different from adding in that it will not require a full rerun of the entire trip matrix.
If PCMSCalculateMatrix() is called (see below) on a matrix that has already been
run and has new stops appended to it, only the data for the new appended stops will
be calculated. All other data will remain unchanged and valid.

int PCMSMatrixSetOptions(Trip trip);

The above function sets the routing parameters used when calculating the route for
each cell of the matrix. The user will use the standard PC*MILER|Connect
functions to create the trip and set all the desired routing parameters in that trip.
Then PCMSMatrixSetOptions() simply copies the previously set options from the
trip ID for RouteMatrix to utilize.

int PCMSMatrixClear();

The above function deletes all stops from the trip matrix object. Any data
previously calculated for this matrix will also be deleted.

int PCMSMatrixGetStopCount();

This function returns the number of stops that are currently part of the trip matrix.

int PCMSMatrixCalculate(TripMatrixCallBackProc *cb);

The above function initiates the calculation of the trip matrix with all of its current
stop information. Depending on the number of stops given, this might be a lengthy
process.

 PC*MILER|Connect User’s Guide 100

int PCMSMatrixAddOrigin(const char *stop);

The above function configures RouteMatrix to only calculate N number of rows,
allowing faster transaction times. It should be inserted just before the API that
calculates the trip matrix (PCMSMatrixCalculate). For example, if you insert
PCMSMatrixAddOrigin(“35.173099517822266n,107.89029693603515w”)
into the sample code at the end of this section, a row of output like the one shown
below will be produced for each stop that is added, instead of the whole matrix.

0.00 253.40 636.04 1688.83 1184.59

int PCMSSetDateOption (Trip trip, int dateOption);

The above function sets the date option related to the depart time calculation.

Parameters:
Trip trip – The trip ID.

int dateOption – Value range is 0 - 3. 0 = Unkown, 1 = Current, 2 = User
Specified, 3 = Day of Week.

int PCMSMatrixSetDepartDayAndTime(int day, unsigned

long hour, unsigned long min);

int PCMSMatrixAddDepartDayAndTime(int day, unsigned
long hour, unsigned long min);

The above functions set depart times for the route matrix.
PCMSMatrixSetDepartDayAndTime() clears existing depart times and sets the
depart time. PCMSMatrixAddDepartDayAndTime() appends the depart time to
existing values.

Parameters:
int day – The day of week.

long hour – The hour of the depart time, value range is 0 – 23.

long min – The minute of the depart time, value range is 0 – 59.

IMPORTANT NOTES:
For depart time-based calculations, you need to call PCMSSetDateOption() and
set the date option to 2 and call PCMSSetRoadSpeedType() and set type to 2.

Each time you call PCMSMatrixSetDepartDayAndTime(), an entire matrix will
be generated after you call PCMSMatrixCalculate(). If PC*MILER|Traffic is

 Chapter 4: PC*MILER|RouteMatrix API’s 101

not licensed and enabled in the PC*MILER user interface or pcmserve.ini,
depart times will have no effect on the output, it will be the same regardless of
different depart times.

int PCMSMatrixGetDepartTimeCount ();

The above function returns the count of depart times for the route matrix.

int PCMSMatrixGetCell(long origIndex, long destIndex,

int rptType, char *pBuffer, intbufSize);

int PCMSMatrixGetCell2(long origIndex, long destIndex,
int rptType, char *pBuffer, intbufSize, int
hourIndex);

The above functions allow the user to retrieve certain pieces of information from a
specific cell in the trip matrix. The arguments break down as follows:

Parameters:
longorigIndex – The index of the origin stop.

longdestIndex – The index of the destination stop.

intrptType – A value indicating what type of report information should be
returned. Value range is 0 – 9. For PCMSMatrixGetCell() the value range is 0-
10. See below for definitions.

char* pBuffer – A pre-allocated memory buffer that will be filled with a delimited
string containing the desired information. Types of data returned can be:

0. Mileage – double
1. Travel Time – double
2. Mileage (air mileage) – double
3. Toll Miles – double
4. Toll Amount – double
5. Miles by State – a string starting with ‘<’ and ending with ‘>’.

The contents of the string will be state:mileage.
Example: <NJ:51.2|NY:34.2>

6. Toll Miles by State – same as above
7. Computation Time – integer in milliseconds
8. Initiated Route Computation – true if tried to run route
9. Successful Route Computation – true if the route computation is successful
10. Works for PCMSMatrixGetCell2 only. Travel time for the depart time

indicated by the hourIndex

intbufSize – The size of a memory buffer supplied by the user.

 PC*MILER|Connect User’s Guide 102

int hourIndex – The index of the depart times set by
PCMSMatrixSetDepartDayAndTime() / PCMSMatrixAddDepartDayAndTime().
The value range is between 0 – PCMSMatrixGetDepartTimeCount() - 1 (the total
amount should be the total number of array elements minus 1).

int PCMSMatrixSetThreadCount (long);

The above is an optional API that allows the calling application to specify how
many threads to use for parallel processing. When not specified, RouteMatrix will
use the available cores and threads on the computer.

int PCMSMatrixSetMaxAirMiles (long);

The above is an optional API that allows the calling application to specify a
maximum airline distance to be used by the PCMSMatrixCalculate () API in order
to decide if it needs to run the route. When the airline distance is greater than the
value specified, it will store a negative number less than zero in the output matrix.

IMPORTANT: By default this value is set at 1500 miles when not specified.

int PCMSMatrixSetComputeTollDollars (bool);

The above is an optional API that allows the calling application to specify that toll
dollars should be generated in the matrix when set to true. Use the Toll Amount
option 4 with the PCMSMatrixGetCell() API to get the toll amount from the
matrix.

int PCMSMatrixSetComputeTollandStateMiles (bool);

The above is an optional API that allows the calling application to specify that toll
dollars should be generated in the matrix when set to true. Use the Toll Amount
option 6 with the PCMSMatrixGetCell() API to get the toll amount from the
matrix.

int PCMSGetTravelTimes (Trip trip, int day, unsigned

long *pDurationArray, unsigned long arrayCount);

The above function returns an array of travel times for a trip. Depending on the
day of the week given, the function returns a trip duration array for 15-minute
increments throughout that day using historical road speeds. It returns 24*4=96 trip
duration for the given day of week.

 Chapter 4: PC*MILER|RouteMatrix API’s 103

Parameters:
Trip trip – Index of the trip.

int day – The day of week, value range is 0 - 6 where 0 represents Sunday.

unsigned long* pDurationArray – A pre-allocated memory buffer that will be
filled with trip durations.

long arrayCount – The size of the memory buffer pDurationArray supplied by
the user must equal 96.

The sample Matrix below filled with distances was created by RouteMatrix with 5
lat/long locations. The sample code is written in C++. A C# .Net RouteMatrix
sample can be found in the PC*MILER|Connect installation folder (usually ALK
Technologies\PCMILER31\Connect\CSharpRouteMatrix\PCMRouteMatrixNET).

Sample Matrix:

0.00 253.40 636.04 1688.83 1184.59
253.10 0.00 383.45 1436.24 881.27
636.30 383.67 0.00 1078.18 654.67
1690.15 1437.53 1079.76 0.00 1359.07
1183.90 881.01 654.71 1359.99 0.00

4.1 RouteMatrix Sample Code
The sample code below uses five stops. A formula for converting thousandths of
hours to hours and minutes is included below the sample code.

void TestRouteMatrix_UserGuide(PCMServerID server)
{
 //The Lat/Longs for the stops used in each comparison
 const int NUM_STOPS = 5;
 const char* latLongs[] = { "35.173099517822266n,107.89029693603516w",
 "35.160099029541016n,103.70149993896484w",
 "35.232200622558594n,97.485397338867188w",
 "34.064998626708984n,81.024497985839844w",
 "43.603099822998047n,96.767799377441406w"};

 Trip matTrip = PCMSNewTrip(server);

 // Set up the Matrix Routing options
 PCMSSetCalcType(matTrip, CALC_PRACTICAL);
 PCMSMatrixSetOptions(matTrip);

 // Set the number of threads to be used internally
 PCMSMatrixSetThreadCount(2);

 // Add the stops onto the matrix
 for (int i = 0; i < NUM_STOPS; i++)
 {

 PC*MILER|Connect User’s Guide 104

 PCMSMatrixAddStop(latLongs[i]);
 }

 // Error check to see if the stops are loaded to the matrix correctly
 long lStopCount = PCMSMatrixGetStopCount();
 if (lStopCount <= 0)
 {
 printf("ERROR: Could not load stops!\n");
 }
 else
 {

 // Calculate the routes
 PCMSMatrixCalculate(NULL);

 // Print the distance results
 for (long i = 0; i < lStopCount; i++)
 {
 for (long j = 0; j < lStopCount; j++)
 {
 char szBuffer[256]= {0};
 PCMSMatrixGetCell(i, j, 0, szBuffer, sizeof(szBuffer));
 printf("%s\t", szBuffer);
 }
 printf("\n");
 }
 }

 //Clear the matrix of all data so that it can be run again
 PCMSMatrixClear();
}

Converting Thousandths of Hours:

To convert thousandths of hours to hours and minutes, use the following formula:

Public int ConvertDurationHours(double duration, out long

hours, out long minutes)
 {
 // Duration is stored in thousandths of an hour
 bool bLessThan0 = duration < 0;
 duration = bLessThan0 ? -duration : duration;

 double time = (double)(duration) / 1000;

 hours = (int)(time);
 minutes = (int)((60.0 * (time - hours)) + 0.5);
 if (60 == minutes)
 {
 hours++;
 minutes = 0;
 }

 hours = bLessThan0 ? -hours : hours;

 Chapter 4: PC*MILER|RouteMatrix API’s 105

 minutes = bLessThan0 ? -minutes : minutes;
 return (0);
 }

 PC*MILER|Connect User’s Guide 106

PC*MILER|Connect
RouteSync® Functions

The three functions described in this chapter provide an extension of the
functionality of ALK Technologies’ RouteSync through PC*MILER|Connect.
RouteSync is an add-on to PC*MILER that must be separately purchased, licensed,
and installed. It provides a direct link between two of ALK’s existing products:
PC*MILER routing, mileage and mapping software in the back office and CoPilot
Truck – ALK’s truck-specific GPS navigation system – in the vehicle.

PC*MILER|Connect API’s allow you to create RouteSync messages which you
will then need to inject into the CoPilot Truck client via the CoPilot SDK.
PC*MILER|Connect API’s will not transport the RouteSync messages across the
communication channels into the in-cab navigation system; instead, it is up to the
user to make sure that the messages are communicated to the in-cab navigation
system running CoPilot SDK.

A typical use case would involve creating the trip using PC*MILER and then
producing the RouteSync-managed trip message that contains the information
about that route. That message can then be communicated to the in-cab system
running CoPilot Truck client software. Using the CoPilot SDK, the user can inject
that message into CoPilot and the CoPilot application will then generate the route
that is identical to the route created by PC*MILER in the back office.

IMPORTANT: PC*MILER|Streets must be licensed and installed to use
RouteSync, and street-level routing must be turned on. See section 5.2 below.

5.1 RouteSync Function Descriptions

long PCMSGetManagedRouteMsgBytes(Trip trip, char
*pBuffer, long bufSize, long lOORCompliance,
double dOORDist, bool bIsFirstLegManaged);

The above function is the recommended RouteSync API – see section 5.2 below
for a sample integration that uses it. This function allows you to create a RouteSync
message that is used to send a route from PC*MILER|Connect to a CoPilot
client. The message is created internally and the byte array representing that
message is copied into the buffer that you provide. You are then responsible for
transporting this byte array to a CoPilot client and injecting it via the Copilot
SDK. The byte array will contain a list of lat/longs that form the route and will also
adhere to any avoid/favors created on the desktop installation.

5 C
ha

pt
er

 Chapter 5: PC*MILER|Connect RouteSync Functions 107

PCMSGetManagedRouteMsgBytes() will return a long value indicating the
length in bytes of the byte array stored in pBuffer. It is recommended to call
PCMSGetManagedRouteMsgBytes() with a buffer size of 0 first in order to get the
size of the buffer necessary to hold the RouteSync message information. Then, the
second call to PCMSGetManagedRouteMsgBytes() should be made with a buffer
size large enough to accommodate the byte array that will be stored in pBuffer.

If street-level routing (PC*MILER|Streets required) is not enabled, the function
will return -1 and the error code from PCMSGetError() will be 1600.

If pBuffer was allocated but did not contain enough space to hold the entire
message, it will return -1 and will not be populated with the RouteSync message. If
pBuffer was allocated and had enough space to hold the entire message, the return
value is the exact number of bytes that were stored into pBuffer. pBuffer will not
be populated with a human-readable string and the calling application should not
attempt to print out or analyze this byte array of data. If pBuffer was NULL this
return value will still indicate the exact number of bytes necessary to contain the
entire message.

Trip trip – The trip ID of the route that you want to send to CoPilot. This trip
should already be filled out with all of the desired stops and trip options. It is not
required that the route be run, but it is recommended that you run the trip before
calling this API to get the RouteSync message data. If the specified trip has not yet
been run, it will automatically be run before the message is created.

char *pBuffer – This is a pointer to a predefined, empty byte array that Connect
will attempt to put the RouteSync message into.

long bufSize – A value indicating the amount of memory allocated for pBuffer. If
this value is less than the amount of bytes for the entire message, the attempt to fill
pBuffer with the message contents will be aborted.

long lOORCompliance – This value will dictate how the CoPilot client will handle
rerouting during an OOR (out-of-route) event. There are three possible values: 0 –
Strict Compliance, 1 – Moderate Compliance, 2 – Minimal Compliance. See
section 5.3 for a description of these options.

double dOORDist – This value will determine how far away from the planned
route the CoPilot-equipped vehicle must be to generate an out-of-route alert. The
default value is 0.2 miles.

bool bIsFirstLegManaged – This boolean will dictate whether or not the first leg
of the given trip will be considered “managed”. True = managed, false =
unmanaged. (Currently, this value no longer affects the results.)

 PC*MILER|Connect User’s Guide 108

long PCMSCreateManagedRouteMsgBytes(Trip trip, char

*pBuffer, long bufSize, const char *pLatLongs,
long lOORCompliance, double dOORDist);

This function is used in special rare cases. It is very similar to
PCMSGetManagedRouteMsgBytes() but with one additional caveat: the TripID
given by the user is only needed to retrieve the desired routing options that will be
applied on the CoPilot side. The actual route generated by that trip, and the stop
information it contains, is not put into the message being created. Instead, you must
specify the actual route by providing a “bread crumb” trail of lat/long values. It is
assumed that this trail of lat/longs will be a fully-run route that was created outside
of PC*MILER and that you are providing it to be packaged up into a RouteSync
message that CoPilot will be able to consume. It is also assumed that this trail of
lat/longs has sufficient resolution to map a fully navigable route onto the ALK road
network with little to no additional routing calculations needed.

PCMSCreateManagedRouteMsgBytes() will return a long value indicating the
length in bytes of the byte array stored in pBuffer. It is recommended to call
PCMSCreateManagedRouteMsgBytes() with a buffer size of 0 first in order to get
the size of the buffer necessary to hold the RouteSync message information. Then,
the second call to PCMSCreateManagedRouteMsgBytes() should be made with a
buffer size large enough to accommodate the byte array that will be stored in
pBuffer.

If pBuffer was allocated but did not contain enough space to hold the entire
message, it will return -1 and will not be populated with the RouteSync message.
If pBuffer was allocated and had enough space to hold the entire message, the return
value is the exact number of bytes that were stored into pBuffer. pBuffer will not
be populated with a human-readable string and the calling application should not
attempt to print out or analyze this byte array of data. If pBuffer was NULL this
return value will still indicate the exact number of bytes necessary to contain the
entire message.

Trip trip – The trip ID of the route you want to send to CoPilot. This trip should
already be filled out with all of the desired stops and trip options. It is not required
that the route be run, but it is recommended that you run the trip before calling this
API to get the RouteSync message data. If the specified trip has not yet been run,
it will automatically be run before the message is created.

char *pBuffer – This is a pointer to a predefined, empty byte array that Connect
will attempt to put the RouteSync message into.

long bufSize – A value indicating the amount of memory allocated for pBuffer. If
this value is less than the amount of bytes for the entire message, the attempt to fill
pBuffer with the message contents will be aborted.

 Chapter 5: PC*MILER|Connect RouteSync Functions 109

const char *pLatLongs – This is a delimited string of lat/long values dictating the
actual route to be traveled. Each pair of lat/long values should be kept in a format
that is geocodable by any other PC*MILER API. Each pair of lat/longs should be
separated by a “|” character. A sample input string is given below.

“40.389408N,74.656269W|40.389116N,74.655889W|40.388820N,74.655497W”

long lOORCompliance – This value will dictate how the CoPilot client will handle
rerouting during an OOR (out-of-route) event; i.e. how strictly CoPilot should try
to return to the original (sent) route in the event that the driver is out-of-route. There
are three possible values: 0 – Strict Compliance, 1 – Moderate Compliance, 2 –
Minimal Compliance. See section 5.3 for a description of these options.

double dOORDist – This value will determine how far away from the planned
route the CoPilot-equipped vehicle must be to generate an out-of-route alert. The
default value is 0.2 miles.

long PCMSGetAFMsgBytes(char *pSetName, char* pBuffer,

long bufSize);

This function is used in special rare cases. It allows you to create a RouteSync
message that is used to send avoid/favor data from a PC*MILER client to a CoPilot
Truck client. You may want to use this for the special case where you do not want
to manage the driver or route but would like the driver to avoid a road.

When using the above PCMSGetAFMsgBytes() function, the route will be based
on a list of lat/longs that adhere to the avoid/favors on the desktop installation (see
section 3.32 on avoid/favor road preferences). The message is created internally
and the byte array representing that message is copied into the buffer that you
provide. You are then responsible for transporting this byte array to a CoPilot client
and injecting it via the CoPilot SDK.

char *pSetName – This argument is a string representing the name of the
avoid/favor set that you wish to package up into a RouteSync message. You may
only specify one name in this string. Optionally you can pass in NULL. In that
case all sets contained in the Avoid/Favor Manager are packaged up.

char *pBuffer – This is a pointer to a predefined, empty byte array that Connect
will attempt to put the RouteSync message into.

long bufSize – A value indicating the amount of memory allocated for pBuffer. If
this value is less than the amount of bytes for the entire message, the attempt to fill
pBuffer with the message contents will be aborted.

PCMSGetAFMsgBytes() will return a long value indicating the length in bytes of
the message stored in pBuffer. If pBuffer was allocated but did not contain enough
space to hold the entire message, it will return -1. If pBuffer was allocated and had

 PC*MILER|Connect User’s Guide 110

enough space to hold the entire message, the return value is the exact number of
bytes that were stored into pBuffer. If pBuffer was NULL this return value will
still indicate the exact number of bytes necessary to contain the entire message.

long PCMSGetRouteSyncMsg (Trip trip, void **pBuffer,

long lOORCompliance, double dOORDist, const char*
externalRouteID, long startingIndex);

The above function will return a long value indicating the length in bytes of the
byte array pointed by pBuffer. It is recommended to call
PCMSGetRouteSyncMsg() with a pointer to char pointer. The memory needed
will be allocated automatically to hold the RouteSync message. The return value is
the exact number of bytes that were pointed by pBuffer. pBuffer will not be
populated with a human-readable string and the calling application should not
attempt to print out or analyze this byte array of data.

Trip trip – The trip ID of the route you want to send to CoPilot. This trip should
already be filled out with all of the desired stops and trip options. It is not required
that the route be run, but it is recommended that you run the trip before calling this
API to get the RouteSync message data. If the specified trip has not yet been run,
it will automatically be run before the message is created.

void **pBuffer – This is a pointer to a pointer that Connect will attempt to put the
RouteSync message into. Note that the client program that makes the function call
will be responsible for freeing the memory allocated into pBuffer.

long lOORCompliance – This value will dictate how the CoPilot client will handle
rerouting during an OOR (out-of-route) event. There are three possible values: 0 –
Strict Compliance, 1 – Moderate Compliance, 2 – Minimal Compliance. See
section 5.3 for a description of these options.

double dOORDist – This value will determine how far away from the planned
route the CoPilot-equipped vehicle must be to generate an out-of-route alert. The
default value is 0.2 miles.

const char* externalRouteID – This value will sets a route identifier that will be
passed along to CoPilot and eventually to FleetPortal. It only has an effect when
JSON format is selected, the default value is NULL.

long startingIndex – This value sets the index of the first stop that CoPilot will
navigate to in the trip. All stops before that index will be skipped. The typical use
case for this is a re-dispatch where the driver was navigating from A B C
D, had already passed stop B, and dispatch wants to send him a modified route from
A B Q C D. If the starting index is set to 2, the driver will be
immediately routed to stop Q, then C D, completing the route. This parameter
only has effect when JSON format is selected, the default value is 0.

 Chapter 5: PC*MILER|Connect RouteSync Functions 111

If the Connect log is enabled, the created blob will be written to the log file directory
with the name "rs_blob_PCMSGetRouteSyncMsg.dat".

5.2 RouteSync Sample Integration
As stated above, the recommended API to use for RouteSync functionality is
PCMSGetManagedRouteMsgBytes(). By default PC*MILER|Connect is
configured to run in highway-only mode for rating purposes, but RouteSync
requires that you turn on street-level routing with PCMSSetRouteLevel(trip, true)
for best results (see section 3.18, PC*MILER|Streets must be installed). If street-
level routing is turned off via PCMSSetRouteLevel(trip, FALSE) or in the
pcmserve.ini (UseStreets=FALSE) and 1) you use a RouteSync API, and 2)
PC*MILER|Connect logging is turned on, a warning message will appear in the log
file that says “You are creating a RouteSync blob without streets. Use the API to
enable streets”.

The following sample shows what you need for an integration.

PCMServerID server = PCMSOpenServer(NULL, NULL);
// NOTE: OpenServer and CloseServer should be executed
sparingly due to excess overhead.
Trip trip = PCMSNewTrip(server);
PCMSSetRouteLevel(trip, TRUE); // turn streets on
PCMSAddStop(trip,"Philadelphia, PA");
PCMSAddStop(trip,"Hamilton, NJ");
PCMSAddStop(trip,"Manhattan,NY");
PCMSSetCalcType(trip, CALC_AVOIDTOLL);
PCMSSetCalcType(trip, CALC_FIFTYTHREE);
PCMSCalculate(trip);

long bufRetLength = 0; char * pBuffer = NULL;long
OORCompliance = 0; double OORDist = .5; bool
IsFirstLegManaged = true;

bufRetLength=
PCMSGetManagedRouteMsgBytes(trip,NULL,0,OORCompliance,
OORDist, IsFirstLegManaged);

pBuffer = new char[bufRetLength];
bufRetLength = PCMSGetManagedRouteMsgBytes(trip,
pBuffer, bufRetLength, OORCompliance, OORDist,
IsFirstLegManaged);

// Send the pBuffer data blob via your communication
method to the CoPilot device.

 PC*MILER|Connect User’s Guide 112

delete [] pBuffer;
PCMSDeleteTrip(trip);
PCMSCloseServer(server);

5.3 Levels of Route Compliance Defined
The level of route compliance included with a route sent to CoPilot indicates how
strictly CoPilot should try to return to the original (sent) route in the event that the
driver is out-of-route. The three possible compliance levels are as follows:

Strict: CoPilot will try to navigate back to the original route at all costs, even if it
means the driver needs to turn around and drive back to rejoin the prescribed route.

Moderate: CoPilot will try to navigate back to the original route but will take into
account the driver’s current position in relation to the destination; i.e. CoPilot will
try to rejoin the prescribed route as it navigates towards the destination, but along
a route that is more reasonable than what the Strict compliance level would follow.

Minimal: At this level, the original prescribed route is not taken into consideration.
The route taken may still rejoin the original route, but its first objective is to
navigate to the destination from the driver’s current position.

5.4 JSON Format Setting in PCMSERVE.INI
To change the format of the RouteSync blobs that you send, you will need to add
the following line in the OPTIONS section of the PCMSERVE.INI file:

[OPTIONS]
RouteSyncJSONFormat= True

With this option set to TRUE, RouteSync blobs will be generated in JSON (v3)
format. By default, the format is v2.

 PC*MILER|Connect User’s Guide 113

Using PC*MILER|Connect
From ‘C’

Building an application with PC*MILER|Connect is similar to using other DLLs
from your C programs. You’ll need to specify in your project the directories that
contain header and library files for PC*MILER|Connect. If you installed
PC*MILER|Connect in C:\ALK Technologies, then the libraries will be in C:\ALK
Technologies\PCMILER31\Connect.

The headers and the sample code will be in C:\ALK Technologies\
PCMILER31\Connect\C_CPP\StaticLink (header files are in the pcmsrv32
folder). Your application must include pcmsdefs.h and pcmstrip.h in all modules
that use subroutines in PCMSRV32. You will need to include pcmsinit.h only in
the files that start and stop the PC*MILER|Connect engine or use the engine’s error
handling routines.

There is more than one way to call functions in the engine. You can either link the
application with the supplied import library, or include the IMPORTS section from
the included pcmsrv32.def file in your project’s module definition file.

• To link with the server engine’s import library, add PCMSRV32.LIB to
your project. The way you do this depends on the programming environment
you use. From the Borland IDE, you insert PCMSRV32.LIB ino yotur
project from the project window.

• To add the imported functions to your module definition file, open your
project’s DEF file and the file PCMSRV32.DEF, and copy the IMPORTS
section from PCMSRV32.DEF to your project’s DEF file. If desired, you
can copy only those functions that you use in your project. Your module
definition file should now look something like this:

EXETYPE WINDOWS
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 8192
STACKSIZE 16384

IMPORTS
 PCMSRV32.PCMSOPENSERVER
 PCMSRV32.PCMSCLOSESERVER
 PCMSRV32.PCMSNEWTRIP
 PCMSRV32.PCMSDELETETRIP
 PCMSRV32.PCMSCALCULATE
 PCMSRV32.PCMSADDSTOP

6 C
ha

pt
er

 PC*MILER|Connect User’s Guide 114

• You can also use the LoadLibrary call at runtime to load the
PC*MILER|Connect, then call GetProcAddress to retrieve the entry points for
the functions exported from the DLL. Examples of this method using Visual
C++ 4.0 are included in the PC*MILER installation folder, usually C:\ALK
Technologies\PCMILER31\Connect.

 PC*MILER|Connect User’s Guide 115

Using PC*MILER|Connect
From Visual Basic

Using PC*MILER|Connect from Visual Basic is very much like calling it from
‘C’: the declarations are different, but the calling sequences are the same. Please
see Chapter 6, the sample code, and the Visual Basic declaration file in your
installation folder (usually C:\ALK Technologies\PCMILER31\Connect). Also
refer to pcmstrip.h and pcmsinit.h in C:\ALK Technologies\PCMILER31\
Connect\C_CPP.

The included sample project is not intended to be a complete application. Rather it
is a collection of illustrative examples of how to open an engine connection, create
a trip, extract a report, look up city names, and create your own user interface on
top of PC*MILER|Connect.

7.1 Caveats for Visual Basic
Be sure to use the function prototypes in the Visual Basic declaration file to get the
proper argument types.

1. First, server IDs must be declared as Integer (2 bytes), and trip IDs are
declared as Long integers.

2. No functions in PC*MILER|Connect use variants, or native Basic strings.

3. All arguments must be declared to be passed with the modifier ByVal. This
is especially true for any arguments that accept strings.

4. String arguments that are modified by PC*MILER|Connect must have their
space declared beforehand. PC*MILER|Connect does not dynamically
resize Basic strings. For example, to get the text of error string #101, do
either of the following:

Dim bytes As Integer
Dim buffer As String * 50
Dim buff2 As String

bytes = PCMSGetErrorString(101, buffer, 50)
buff2 = String(40, Chr(0))
bytes = PCMSGetErrorString(101, buff2,
Len(buff2))Strings utilities

7 C
ha

pt
er

 PC*MILER|Connect User’s Guide 116

7.2 Strings utility

Int PCSStrLen(char *str)

PCMSStrLen() returns the length in bytes of a ‘C’ string. This is simply a cover
of the ‘C’ strlen() routine.

7.3 Using PC*MILER|Connect With Web Applications Running
Under Internet Information Services

A working sample code with solution file is in the …\ALK
Technologies\PCMILER31\Connect folder. The solution file is called
pcmdotnet.sln. You should be able to open in Visual Studio 2003 or higher and
build and run this sample application.

Sample VB.Net source code is in the …\ALK Technologies\
PCMILER31\Connect\VB.NET folder. The file is called testconnect.vb.

Sample C# (sharp) source code is in the …\ALK Technologies\
PCMILER31\Connect\Csharp folder. The file is called testconnect.cs.

Sample C# (sharp) source code with external api function declarations are in the
…\ALK Technologies\PCMILER31\Connect\PCMDLLINT folder. The file is
called PCMDLL.cs. This file is compiled and builds a wrapper dll called
pcmdllint.dll which can be used by C# applications or VB.NET applications. A
programmer can add more of the PCM|Connect functions to this wrapper following
the data type rules below.

The data type mapping rules follow:

• Use int or integer for longs and shorts. NOTE: The TRIPID should be
declared as Int or Integer.

• Use StringBuilder for returned strings.

• Use ref or ByRef for long/int/short pointers to returned pointers.

 Chapter 7: Using PC*MILER|Connect from Visual Basic 117

7.4 Configuring/Administrating Internet Information Services

NOTE: If your application is locked into 64 bit mode, only the 64 bit versions of
the PC*MILER dlls will work with it. If your application is 32 bit, follow the steps
below to get things running with ALK’s 32 bit PC*MILER dlls.

1. Under IIS 7, configure the application pools to run in "Classic Mode" win 32,
and configure the application pools to run .net 2.0 version.

2. If your .Net application was created using MS Visual Studio, you’ll need to
build the application using the x86 target output option. (This is under the Build
Properties tab, the Platform Target pull-down option should be x86 which is
another name for 32 bit.)

3. If your application is 64 bit then our interop wrapper dll should be created with
the Platform Target pull-down option set to x64 or Any CPU. If the platform is
64 bit, your application is 64 bit, and ALK's 64 bit dlls are installed in the correct
folders, then having the platform set to Any CPU or x64 should work.

 PC*MILER|Connect User’s Guide 118

Using PC*MILER|Connect
From MS Access

NOTE: The DLL is named PCMSRV32.DLL.

Declare PC*MILER|Connect functions using a ‘Declare’ statement in the module
sheet. Once you have declared the functions, your Microsoft Access applications
can call the functions. Please refer to Chapter 6 for more details about this topic.
You may also use PCMSRV32.TXT as a guide to using PC*MILER|Connect.

The included sample database file accdem32.mdb is not intended to be a complete
application. Rather it is a collection of illustrative examples of how to open an
engine connection, calculate miles between two cities, find the latitude/longitude
for a city name, etc. These sample files are in your installation folder, usually
C:\ALK Technologies\PCMILER31\Connect\Access.

8.1 About accdem32.mdb
Following is a description of what is contained in the accdem32.mdb.

The module named PCMiles contains the declarations section. The macro named
PCMilerStart opens the engine connection. The macro named PCMilerEnd
closes the connection. In the Database Window, if you select the Query button, you
will see some examples to calculate miles, get latitude/longitudes, etc.

Before selecting any Query, you must run the Macro named PCMilerStart. If
this is not done, all results will be -1.

If you get an error saying that ‘PCMSRV32.DLL is not found’, then check to see if
you have a copy of the PCMSRV32.DLL and PCMSERVE.INI in your Windows
folder. You can also update the module named PCMiles with the proper directory
of the PCMSRV32.DLL.

Once the engine is connected, you can select any Query and run.

In order to properly shut down the connection to PC*MILER|Connect, run the
macro named PCMilerEnd.

Example for calculating distances between two places:

1. Open the database named accdem32.mdb.
2. Run the macro named PCMilerStart.

8 C
ha

pt
er

 Chapter 8: Using PC*MILER|Connect from MS Access 119

3. Run the query named Calculate Miles.
4. Enter Origin as Princeton, NJ
5. Enter Destination as Trenton, NJ.

The query returns the origin, destination and the distance between them in miles.

 PC*MILER|Connect User’s Guide 120

Using the
PC*MILER COM Interface

The PC*MILER COM Interface is an Automation Server that allows you to access
the functionality of the PCMSRV32.DLL in an object-oriented way. The
PC*MILER COM Interface can be used to easily integrate PC*MILER with your
application written in Visual Basic, Delphi, or any other visual RAD environment.
The PC*MILER COM Interface can also easily be used with the Active Server
Pages (ASP) environment, which enables integrating PC*MILER functionality into
your Web application.

NOTE: When using PC*MILER|Connect with COM via Internet Information
Services (IIS) you must configure the website to be set up using phsyical path
credentials that are a part of the "Administrators" user group. The directory where
the code is stored should have "Full Control" for the user or users as well. When
configuring the Application Pool being used, we recommend enabling 32-Bit
Applications, Classic Managaed Pipeline Mode, and a Identity of Network Service
if running the PC*MILER|Connect sample.

Each PC*MILER|Connect object:

• has characteristics, known as properties; for example, you can set a property
to change the default region for routing or to create a trip object.

• can perform certain actions, called methods; for example, you can use methods
to convert place names to lat/long coordinates and vice versa.

The PC*MILER COM Interface consists of various objects. The PC*MILER|
Connect object is the only object you can create directly. To access other objects,
like a trip, pick list, report, report leg, report segment, trip options or points along
the route, you have to call the server object’s methods.

The lifetime of trip, report leg, trip options and report segment objects is limited by
the life span of the server object, while pick list, points along the route and report
objects can be used after the trip object has been deleted.

NOTE: It is the user’s responsibility to delete all created objects.

One way to create a COM object in VB is to call the CreateObject function with
the object’s ProgID.

Dim server as Object

Set server = CreateObject("objectProjgId”)
Set server = Nothing

9 C
ha

pt
er

 Chapter 9: Using the PC*MILER COM Interface 121

Another way is to add a reference to the project. For details see Visual Basic help.

The PC*MILER automation server ProgID for the current version can be found in
the system registry. The version independent ProgID for PC*MILER automation
server is:

 "PCMServer.PCMServer”.

9.1 Working With Objects
When you use properties in your code, you can either set (change the value of) the
property, or get (retrieve the current value of) the property. Most properties are
read-write. This means you can set and get them. However, there are properties
which are read-only or write-only.

The way you use properties in code varies from one development environment to
another. Some environments such as Visual C++ do not support properties, but
provide get and set functions to do the work of each property. C++ programmers
can find the definition of the interface for the PC*MILER|Connect automation
object in the header file pcmsole.h. Consult your environment documentation for
specific information about using properties. The examples presented below
provide guidance to users of development environments like Delphi or VB.

PC*MILER|Connect automation object’s errors that occur during program
execution are handled like other errors. You must provide your own error handling
routines to intercept and manage errors. Note that the return value of all functions
is of Windows type HRESULT. There are two error codes specific to
PCMSOLE.DLL:

-2147220904 L Error loading PCMSRV32.DLL
-2147220903L PCMSRV32.DLL error

For more detailed information on PCMSRV32.DLL errors, use ErrorCode or
ErrorString properties.

Note also that there are two success codes: “success true” and “success false”.

S_OK 0x00000000L
S_FALSE 0x00000001L

The objects, properties and methods are listed on the following pages. See Figure
1, next page, for an illustration of how to get from one object to another.

 PC*MILER|Connect User’s Guide 122

9.2 Objects: Descriptions and Relationships

Object Description

Server PC*MILER|Connect server engine

Trip Trip

PickList Picklist of valid locations

Report Detailed or State or Mileage report of a trip

HTMLReport Report in HTML format

Double Object containing route stops as points

Options Route options

LegInfo Object containing information about a specific
report leg

Segment Object containing information about a specific
report segment (a “report segment” is one line
within a trip leg on a Detailed report)

ReportData Object containing requested report data

The chart on the next page shows how to get from one object to another.

 Chapter 9: Using the PC*MILER COM Interface 123

FIGURE 1. RELATIONSHIPS of OBJECTS
 How to get from one object to another

PCMSRV32.DLL

TRIP PICKLIST

N
ew

Trip

G
etFm

tPicklist

G
etPicklist

LEGEND

Object =
Method or Property =

* IMPORTANT: To obtain any object that is marked
with an asterisk above, you must first call the method
TravelDistance of the Trip object.

REPORT
DATA*

REPORT*

HTML
REPORT*

OPTIONS

DOUBLE* DOUBLE*

OPTIONSEX
LefInfo

Segm
ent

G
etR

eportD
ata

G
etH

tm
lR

eport

G
etR

eport

G
etO

ptions

LatLongsEnR
oute

G
etO

ptionsEx

G
etO

ptionsEx

R
eportLeg

Segm
ent

 PC*MILER|Connect User’s Guide 124

9.3 Objects, Properties and Methods Listed

Server OBJECT PROPERTIES AND METHODS

PROPERTIES:
 ID short (read)
 ProductName String (read)
 ProductVersion String (read)
 Valid Boolean (read)
 ErrorCode long (read)
 ErrorString String (read)
 NumRegions short (read)
 DefaultRegion String (read/write)

METHODS:
 AFLoad (deprecated in version 26)

AFSave (deprecated in version 26)
AFLoadForRegion (deprecated in version 26)
AFSaveForRegion (deprecated in version 26)
CheckPlaceName

 CityToLatLong
 LatLongToCity
 CalcDistance
 CalcDistance2
 CalcDistance3
 GetFmtPickList
 GetPickList
 NewTrip
 RegionName
 GetLRPickList
 NumPOICategories

 POICategoryName
NumTollDiscounts

 TollDiscountName

Trip OBJECT PROPERTIES AND METHODS

PROPERTIES:
 ID long (read)
 Region String (read)
 OnRoad Boolean (write)
 ErrorStringEx string (read)

METHODS:
 AFLinks
 AFLinksClear

 Chapter 9: Using the PC*MILER COM Interface 125

 NumStops
 SetDefOptions
 AddStop
 GetStop
 GetStop2
 ClearStops
 Optimize
 DeleteStop
 StopLoaded
 UseShapePts
 TravelTime
 TravelDistance
 LLToPlace
 LocationAtMiles
 LocationAtMinutes
 LatLongAtMiles
 LatLongAtMinutes
 LatLongsEnRoute
 DistanceToRoute
 GetReport
 GetReportData
 GetOptions
 GetOptionsEx
 GetHTMLReport
 TollAmount
 TollBreakdown
 SetVehicleConfig
 AddPing
 ReduceCalculate
 FuelOptimize

Options OBJECT PROPERTIES AND METHODS

PROPERTIES:
 Miles Boolean (read/write)
 RouteType short (read/write)
 BreakHours long (read/write)
 BreakWaitHours long (read/write)
 CostPerLoadedMile long (read/write)
 AlphaOrder Boolean (read/write)
 BordersOpen Boolean (read/write)
 Hub Boolean (write)
 ShowFerryMiles Boolean (write)

 HazType short (write)
 CustomMode Boolean (write)
 RouteLevel Boolean (write)
 ExchangeRate long (write)

 PC*MILER|Connect User’s Guide 126

METHODS:
 Tollmode

OptionsEx OBJECT PROPERTIES AND METHODS

PROPERTIES:
 RouteType long (read/write)
 OptionFlags long (read/write)

 VehicleType long (read/write)

PickList OBJECT PROPERTIES AND METHODS

PROPERTIES:
 Count long (read)

METHODS:
 Entry

Report OBJECT PROPERTIES AND METHODS

PROPERTIES:
 NumLines long (read)
 NumBytes long (read)
 Type short (read)
 Text String (read)

METHODS:
 Line

HTMLReport OBJECT PROPERTIES AND METHODS

PROPERTIES:
 NumBytes long (read)
 Text String (read)

ReportData OBJECT PROPERTIES AND METHODS

PROPERTIES:
 NumSegments short (read)
 NumLegs short (read)

METHODS:
 Segment
 ReportLeg

 Chapter 9: Using the PC*MILER COM Interface 127

Segment OBJECT PROPERTIES AND METHODS

PROPERTIES:
 State string (read)
 Dir string (read)
 Interchange string (read)
 Route string (read)
 Miles long (read)
 Minutes long (read)
 Toll short (read)

LegInfo OBJECT PROPERTIES AND METHODS

PROPERTIES:
 TotMiles long (read)
 LegMiles long (read)
 TotCost long (read)
 LegCost long (read)
 TotMinutes long (read)
 LegMinutes long (read)

Double OBJECT PROPERTIES AND METHODS

PROPERTIES:
 Count long (read)

METHODS:
 Entry double (read)

OLE CONSTANTS

 PC*MILER|Connect User’s Guide 128

9.4 Detailed Description of Properties and Methods

9.4.1 Server OBJECT PROPERTIES AND METHODS

ID property (read)

Description:

Returns the server id.

Visual Basic Syntax:

serverID = Server.ID

Part Type Description
serverID short server id

Remarks:

0 if errors encountered on creation, check ErrorCode or
ErrorString

ProductName property (read)

Description:

Returns the product name.

Visual Basic Syntax:

productName = Server.ProductName

Part Type Description
productName string product name

ProductVersion property (read)

Description:

Returns the product version.

Visual Basic Syntax:

productVersion = Server. ProductVersion

Part Type Description
productVersion string product version

 Chapter 9: Using the PC*MILER COM Interface 129

Valid property (read)

Description:

Returns the status of the server engine.

Visual Basic Syntax:

serverStatus = Server.Valid

Part Type Description
serverStatus bool server engine status

Remarks:
 For more details see PCMSOpenServer() description for

PCMSRV32.DLL.

ErrorCode property (read)

Description:

Returns the server error code.

Visual Basic Syntax:

serverErrorCode = Server.ErrorCode

Part Type Description
serverErrorCode long server error code

Remarks:
 Returns PCMSRV32.DLL specific error codes.

PCMSGetError()

ErrorString property (read)

Description:

Returns the server error string.

Visual Basic Syntax:

serverErrorString = Server.ErrorString(bufSize)

Part Type Description
bufSize short string size
serverErrorString string server error string

Remarks: PCMSGetErrorString()

 PC*MILER|Connect User’s Guide 130

DefaultRegion property (read/write)

Description:

Returns/sets the server default region.

Visual Basic Syntax:

defRegion = Server.DefaultRegion
Server.DefaultRegion = defRegion

Part Type Description
defRegion string default region name

Remarks:

PCMSGetDefaultRegion()

NumRegions property (read/write)

Description:

Returns the total number of regions available for routing.

Visual Basic Syntax:
numRegions = Server.NumRegions()

Part Type Description
numRegions short number of regions

Remarks: PCMSNumRegions()

AFLoad method

Description:

Loads a set of avoided or favored links from a file where they were saved
previously. (This method was deprecated in version 26.)

Visual Basic Syntax:

serverAFLoad = Server.AFLoad (fileName);
COM – Interface:

HRESULT AFLoad (BSTR fileName, [out, retval] long * pVal);

Part Type Description
fileName string file name to load from
pVal int result value

Remarks:

 Chapter 9: Using the PC*MILER COM Interface 131

AFSave method

Description:

Allows saving a set of avoided or favored links to a file. (This method was
deprecated in version 26.)

Visual Basic Syntax:
serverAFSave = Server.AFSave ();

COM – Interface:
HRESULT AFSave ([out, retval] long * pVal);

Part Type Description
pVal int result value

Remarks:

AFLoadForRegion method

Description:

See PCMSAFLoadForRegion. (Deprecated in version 26.)

Visual Basic Syntax:
serverAFLoadForRegion = Server.AFLoadForRegion (filename,
regionID);

COM – Interface:
HRESULT AFLoadForRegion (BSTR fileName, BSTR regionID, [out,
retval] long * pVal);

Part Type Description
fileName string file name to load from
regionID string regionID, such as “NA” for North America
pVal int result value

Remarks:

AFSaveForRegion method

Description:

See PCMSSaveForRegion. (Deprecated in version 26.)

 Visual Basic Syntax:
serverAFSaveForRegion = Server.AFSaveForRegion (regionID);

 PC*MILER|Connect User’s Guide 132

COM – Interface:
HRESULT AFSaveForRegion (BSTR regionID, [out, retval] long *
pVal);

Part Type Description
regionID string region ID, such as “NA” for North America
pVal int result value

CheckPlaceName method

Description:

Checks if a place name exists in the database.

Visual Basic Syntax:

num = Server. CheckPlaceName(placeName)

COM – Interface:
HRESULT CheckPlacename(BSTR placeName, [out,retval]
long *num):

Part Type Description
placeName string place name
num long number of matching places

Remarks:

Returns the number of matching places in the PC*MILER
database. If it returns 0 then there are no matching places. If
the function returns –1, then an error has occurred.

CityToLatLong , LatLongToCity methods

Description:

Used for converting between place name to lat/long coordinates.

Visual Basic Syntax:

placeLatLong = Server.CityToLatLong(placeName, bufSize)
PlaceName = Server.LatLongToCity(placeLatLong, bufSize)

COM – Interface:
HRESULT CityToLatLong(BSTR placeName, short bufSize,
[out, retval] BSTR* placeLatLong);
HRESULT LatLongToCity(BSTR placeLatLong, short bufSize,
[out, retval] BSTR* placeName);

Part Type Description
placeName string place name
placeLatLong string place coordinates
bufSize short length +1 of the return string

 Chapter 9: Using the PC*MILER COM Interface 133

Remarks:

Returns S_OK if converted successfully, S_FALSE if invalid input.
PCMSCityToLatLong, PCMSLatLongToCity

CalcDistance method

Description:

Calculate distance for a given OD (Origin Destination)
pair. Default route type is Practical.

Visual Basic Syntax:
dist = Server. CalcDistance(orig, dest)

COM – Interface:

HRESULT CalcDistance(BSTR orig, BSTR dest, [out, retval]long *dist);

Part Type Description
orig string origin place name
dest string destination place name

Remarks:

CalcDistance2 method

Description:

Calculate distance for a given OD pair and route type.

Visual Basic Syntax:

dist = Server. CalcDistance2(orig, dest, routeType)
COM – Interface:

HRESULT CalcDistance2(BSTR orig, BSTR dest, short
routeType, [out, retval] long* dist);

Part Type Description
orig string origin place name
dest string destination place name
routeType short route type
dist long travel distance between orig and dest in tenths of miles

Values for routeType are the following:

 PC*MILER|Connect User’s Guide 134

Value Route Types Description

0 Practical The default routing type: most practical
1 Shortest shortest by distance
2 National PC*MILER route type State + National

Network – favors National Network plus 53
foot routing

3 AvoidToll avoid tolls
4 Air air (straight line)

Remarks:

Section 9.4.12, OLE Constants at the end of this chapter for CalcEx
route type combinations

CalcDistance3 method

Description:

Calculate distance/travel time for an OD pair and route type.

Visual Basic Syntax:

dist = Server. CalcDistance3(orig, dest, routeType, time)
COM – Interface:

HRESULT CalcDistance3(BSTR orig, BSTR dest, short
routeType, long *time, [out, retval] long* dist);

Part Type Description
orig string origin place name
dest string destination place name
routeType short route type
time long travel time, orig to dest (in minutes)

Value Route Types Description

0 Practical The default routing type: most practical
1 Shortest shortest by distance
2 National PC*MILER route type State + National

Network – favors National Network plus 53
foot routing

3 AvoidToll avoid tolls
4 Air air (straight line)

 Chapter 9: Using the PC*MILER COM Interface 135

Remarks:
Section 9.4.12, OLE Constants at the end of this chapter for CalcEx
route type combinations.

GetPickList method

Description:

Returns a list of partially or exactly matching place names for supplied name.

Visual Basic Syntax:
pickList = Server.GetPickList(placeName, regionName, matchType)

COM – Interface:
HRESULT GetPickList(BSTR placeName, BSTR regionName,
short matchType, [out, retval] IPCMPickList** pickList);

Part Type Description
placeName string place name to match
pickList object pick list object
regionName string region name to match
matchType short match Type

Value Match Types

0 partial
1 exact
2 default

GetFmtPickList method

Description:

Returns a list of partially or exactly matching place names for
the name supplied.

Visual Basic Syntax:

pickList = Server.GetFmtPickList(placeName, regionName,
matchType, zipLen, cityLen, countyLen)

COM – Interface:
HRESULT GetFmtPickList(BSTR placeName, BSTR
regionName, short matchType, short zipLen, short cityLen,
short countyLen, [out, retval]IPCMPickList * * pickList);

Part Type Description
placeName string place name to match
regionName string region name to match
matchType short match Type

 PC*MILER|Connect User’s Guide 136

zipLen short number of characters for zip code field
cityLen short number of characters for city field
countyLen short number of characters for state and county field
pickList object pick list object

GetLRPickList method

Description:

Returns a pick list of cities, postal codes, PC*MILER
custom places, and/or POI’s (points of interest) within a
specified radius of a city/state or ZIP.

Visual Basic Syntax:

pickList = Server. GetLRPickList(placeName, radius, regionName, cities,
postalCodes, customPlaces, poi, poiCategory)

COM – Interface:
HRESULT GetLRPickList(BSTR placeName, long radius,
BSTR RegionName, VARIANT_BOOL cities, VARIANT_BOOL
postalCodes, VARIANT_BOOL customPlaces,
VARIANT_BOOL poi, long poiCategory, [out, retval]
IPCMPickList** pickList;

Part Type Description
placeName string city/state or ZIP around which to search
radius long distance of radius (must be an INTEGER in

WHOLE MILES)
regionName string region of placeName
cities bool on/off cities search
postalCodes bool on/off postal code search
customPlaces bool on/off custom places search
poi bool on/off POI search
poiCategory long category of POI to search for

Remarks:

PCMSLocRadLookup, PCMSPOICategoryName

NumPOICategories method

Description:

Returns the number of available POI categories for a
location radius search.

 Visual Basic Syntax:
count = Server. NumPOICategories

 Chapter 9: Using the PC*MILER COM Interface 137

COM – Interface:
HRESULT NumPOICategories([out, retVal] long* pVal);

Part Type Description
count long number of categories

Remarks:

PCMSNumPOICategories

NewTrip method

Description:

Returns a trip object.

Visual Basic Syntax:

trip = Server. NewTrip(regionName)
COM – Interface:

HRESULT NewTrip(BSTR regionName, [out, retval]
IPCMTrip** trip);

Part Type Description
regionName string region in which the trip is created
trip object trip object

Remarks:

PCMSNewTripWithRegion

RegionName method

Description:

Returns the name of the region requested by index.

Visual Basic Syntax:

regionName = Server. RegionName(which)
COM – Interface:

HRESULT RegionName(short which, [out, retval] BSTR*
regionName);

Part Type Description
regionName string region name
which short region index

 PC*MILER|Connect User’s Guide 138

POICategoryName method

Description:

Returns names of available POI categories.

Visual Basic Syntax:

poiName = Server. POICategoryName(which)
COM – Interface:

HRESULT POICategoryName(long which, [out, retVal]
BSTR* poiName);

Part Type Description
which long index of POI category
poiName string name of POI category

Remarks:

PCMSPOICategoryName

NumTollDiscounts method

Description:

Available only if the PC*MILER|Tolls add-on module is
installed. Returns the number of recognized toll discount
programs. Note that “cash” is included in this number.

Visual Basic Syntax:

numTollDiscounts = Server. NumTollDiscounts

COM – Interface:
HRESULT NumTollDiscounts([out, retval] long* pVal);

Part Type Description
numTollDiscounts long number of available toll discount
 programs
Remarks:

PCMSNumTollDiscounts

TollDiscountName method

Description:

Available only if the PC*MILER|Tolls add-on module is installed.
Returns toll discount program names.

 Chapter 9: Using the PC*MILER COM Interface 139

Visual Basic Syntax:
discName = Server. TollDiscountName(which)

COM – Interface:
HRESULT TollDiscountName(long which, [out, retval] BSTR*
discName);

Part Type Description
discName string discount program name
which long program name index

Remarks:
PCMSGetTollDiscountName

 PC*MILER|Connect User’s Guide 140

9.4.2 Trip OBJECT PROPERTIES AND METHODS

ID property (read)

Description:

Returns the trip id.

Visual Basic Syntax:

tripID = Trip.ID

Part Type Description
tripID long trip id

Region property (read)

Description:

Returns the name of the region in which the trip was created.

Visual Basic Syntax:

region = Trip.Region

Part Type Description
region String region name

OnRoad property (write)

Description:

Sets the On Road mode.

Visual Basic Syntax:

Trip.OnRoad = mode

Part Type Description
mode bool on/off road status

Remarks:

 Chapter 9: Using the PC*MILER COM Interface 141

ErrorStringEx property (read)

Description:

Returns the stop at which an error occurred if error code
114 has been generated.

Visual Basic Syntax:

serverErrorStringEx = Server.ErrorStringEx(bufSize)

Part Type Description
serverErrorStringEx string server error message
bufSize short string size

Remarks:
 PCMSErrorStringEx()

AFLinks method

Description:

Adds links in the trip to the current set of avoided or favored links.

Visual Basic Syntax:

tripAFLinks = trip.AFLinks (bFavor);
COM – Interface:

HRESULT AFLinks (VARIANT_BOOL bFavor, [out, retval] int * pVal);

Part Type Description
bFavor bool True for avoid, False for favor
pVal int result value

Remarks:

AFLinksClear method

Description:

Clears all saved avoided and favored links.

Visual Basic Syntax:

tripAFLinksClear = Trip.AFLinksClear ();
COM – Interface:

HRESULT AFLinksClear ([out, retval] int * pVal);

 PC*MILER|Connect User’s Guide 142

Part Type Description
pVal int result value

Remarks:

NumStops method

Description:

Returns the number of stops for the trip.

Visual Basic Syntax:

tripNumStops = Trip.NumStops
COM – Interface:

HRESULT NumStops([out, retval] short* tripNumStops);

Part Type Description
tripNumStops short number of stops

TravelTime method

Description:

Returns the travel time in minutes. The method
TravelDistance of the Trip object must be called first
before calling this method.

Visual Basic Syntax:

time = Trip.TravelTime
COM – Interface:

HRESULT TravelTime([out, retval] long* time);

Part Type Description
time long travel time

Remarks:

PCMSGetDuration

 Chapter 9: Using the PC*MILER COM Interface 143

TravelDistance method

Description:

Returns the travel distance in tenths of miles. This method
must be called first before any of the following methods
can be used:
TravelTime
LocationAtMiles
LocationAtMinutes
LatLongAtMiles
LatLongAtMinutes
LatLongEnRoute
DistanceToRoute
GetReport
GetReportData
GetHTMLReport

Visual Basic Syntax:

dist = Trip.TravelDistance
COM – Interface:

HRESULT TravelDistance([out, retval] long* dist);

Part Type Description
dist long travel distance

Remarks:

PCMSCalcTrip

UseShapePts method

Description:
 Sets shapepoints on and off when doing calculations using

lat/longs. (Deprecated in Version 27.)

Visual Basic Syntax:

Trip.UseShapePts(mode)
COM – Interface:

HRESULT UseShapePts(VARIANT_BOOL onOff);

Part Type Description
Mode bool When off, roads are drawn with

straight lines; when on, curves in
roads are taken into account.

Remarks:
PCMSSetUseShapePts

 PC*MILER|Connect User’s Guide 144

LLToPlace method

Description:

When this property is set to true, every stop added is
converted from latlong to place name.

 Visual Basic Syntax:
Trip.LLToPlace (true)

COM – Interface:
HRESULT LLToPlace(VARIANT_BOOL onOff);

Remarks:

SetDefOptions method

Description:

Resets trip options to default values.

Visual Basic Syntax:

Trip.SetDefOptions
COM – Interface:

HRESULT SetDefOptions();

Remarks:

PCMSDefaults

AddStop method

Description:

Adds a stop to the trip.

Visual Basic Syntax:

Trip.AddStop(stopName)
COM – Interface:

HRESULT AddStop(BSTR stopName);

Part Type Description
stopName string stop name

 Chapter 9: Using the PC*MILER COM Interface 145

GetStop method

Description:

Returns the place name for the stop requested.

Visual Basic Syntax:

placeName = Trip.GetStop(which, bufSize)
COM – Interface:

HRESULT GetStop(short which, short len, [out, retval]
BSTR*placeName);

Part Type Description
bufSize short stop string size
placeName string stop name
which short stop index

Remarks:

PCMSGetStop

GetStop2 method

Description:

Returns the place name for the stop requested.

Visual Basic Syntax:

placeName =Trip.GetStop2(which)
COM – Interface:

HRESULT GetStop2(short which, [out, retval] BSTR*placeName);

Part Type Description
placeName string stop name
which short stop index

Remarks:

PCMSGetStop

DeleteStop method

Description:

Deletes the stop from the trip by index.
 Visual Basic Syntax:

Trip.DeleteStop(which)
COM – Interface:

HRESULT DeleteStop(short which);

 PC*MILER|Connect User’s Guide 146

Part Type Description
which short stop index

Remarks:

PCMSDeleteStop

ClearStops method

Description:

Deletes all stops from the trip.

Visual Basic Syntax:

Trip.ClearStops
COM – Interface:

HRESULT ClearStops();

Remarks:
 PCMSClearStops

Optimize method

Description:

Optimizes the trip by changing the stop order.

Visual Basic Syntax:

Trip.Optimize(fixDest)
COM – Interface:

HRESULT Optimize(short fixDest);

Part Type Description
fixDest short 1 if fix destination when

resequencing stops, 0 if not

Remarks:
 PCMSOptimize

StopLoaded method

Description:

Marks each stop as either loaded or empty.

Visual Basic Syntax:

Trip.StopLoaded(which, onOff)

 Chapter 9: Using the PC*MILER COM Interface 147

COM – Interface:
HRESULT StopLoaded(short which, VARIANT_BOOL onOff);

Part Type Description
which short stop index
onOff bool True if loaded; False if not

Remarks:

PCMSSetLoaded

GetReport method

Description:

Returns a report object of the type specified for the trip.
The method TravelDistance of the Trip object must
be called first before calling this method.

Visual Basic Syntax:

report = Trip.GetReport(reportType)
COM – Interface:

HRESULT GetReport(short reportType, [out,retval]
IPCMReport** report);

Part Type Description
reportType short report type
report object report object

Value Report Types Description

0 Detailed Detailed Route report. Shows detailed
driving instructions from the trip’s origin to
its destination.

1 State State/Country report. Appended to the
mileage report, it displays the state by state
and country breakdown of the trip.

2 Mileage Mileage report. Shows the mileage
summary for each leg of the trip.

5 Road Type Road Type report. Breaks down trip
mileage by PC*MILER road category.

 PC*MILER|Connect User’s Guide 148

GetHTMLReport method

Description:

Returns an HTML report object of the type specified for the
trip. The method TravelDistance of the Trip object must
be called first before calling this method. Decimal places in
mileage are set in the PC*MILER user interface or in the
PCMSERVE.INI file.

Visual Basic Syntax:
HTMLReport = Trip.GetHTMLReport(reportType)

COM – Interface:
HRESULT GetHTMLReport(short reportType, [out, retval]
IPCMHTMLReport** HTMLReport);

Part Type Description
reportType short report type
HTMLReport object HTML report object

DistanceToRoute method

Description:

Calculates distance to route from a given location. The
method TravelDistance of the Trip object must be
called first before calling this method.

Visual Basic Syntax:

dist = Trip. DistanceToRoute (location)
COM – Interface:

HRESULT DistanceToRoute(BSTR location, [out, retval]
long* dist);

Part Type Description
dist long distance
location string location name

Remarks:
 PCMSCalcDistToRoute

 Chapter 9: Using the PC*MILER COM Interface 149

LocationAtMiles method

Description:

Tells you your location at given distance into the trip. The
method TravelDistance of the Trip object must be
called first before calling this method.

Visual Basic Syntax:
location = Trip. LocationAtMiles(miles, bufSize)

COM – Interface:
HRESULT LocationAtMiles(long miles, short bufSize, [out,
retval] BSTR* location);

Part Type Description
location string location name
miles long distance
bufSize short buffer size for returned string

Remarks:
 PCMSGetLocAtMiles

LocationAtMinutes method

Description:

Tells you your location at given time into the trip. The
method TravelDistance of the Trip object must be
called first before calling this method.

Visual Basic Syntax:

location = Trip. LocationAtMinutes(minutes, bufSize)
COM – Interface:

HRESULT LocationAtMinutes(long minutes, short bufSize, [out, retval]
BSTR* location);

Part Type Description
location string location name
minutes long travel time
bufSize short buffer size for returned string

Remarks:
 PCMSGetLocAtMinutes

 PC*MILER|Connect User’s Guide 150

LatLongAtMinutes method

Description:

Tells you your location at given time into the trip. The
method TravelDistance of the Trip object must be
called first before calling this method.

Visual Basic Syntax:

location = Trip. LatLongAtMinutes (minutes, useSPts)
COM – Interface:

HRESULT LatLongAtMinutes(long min, VARIANT_BOOL useSPts,
 [out, retval] BSTR* location);

Part Type Description
location string latlong string
minutes long travel time
useShapePts bool use or not shape points

Remarks:
 PCMSLatLongAtMinutes

LatLongAtMiles method

Description:

Tells you your location at given distance into the trip. The
method TravelDistance of the Trip object must be
called first before calling this method.

Visual Basic Syntax:

location = Trip. LatLongAtMiles (miles, useShapePts)
COM – Interface:

HRESULT LatLongAtMiles(long miles, VARIANT_BOOL useShapePts,
[out, retval] BSTR* location);

Part Type Description
location string latlong string
miles long travel time
useShapePts bool use or not use shape points

Remarks:
 PCMSLatLongAtMiles

 Chapter 9: Using the PC*MILER COM Interface 151

LatLongsEnRoute method

Description:

Returns an object containing coordinates of points along
the route. The method TravelDistance of the Trip
object must be called first before calling this method.

Visual Basic Syntax:

routePoints = Trip. LatLongsEnRoute (useShapePts)
COM – Interface:

HRESULT LatLongsEnRoute(VARIANT_BOOL useShapePts,
[out, retval] IPCMDouble** routePoints);

Part Type Description
useShapePts bool use or not shape points
routePoints object a Double object (not to be

confused with the datatype
double)

Remarks:
 PCMSGetLocAtMinutes

GetReportData method

Description:

Gets the report object. The method TravelDistance of
the Trip object must be called first before calling this
method.

Visual Basic Syntax:

reportData = Trip. GetReportData
COM – Interface:

HRESULT GetReportData([out, retval] IPCMReportData**
reportData);

Part Type Description
ReportData ReportData ReportData object

 PC*MILER|Connect User’s Guide 152

GetOptions method

Description:

Returns the trip options object.

Visual Basic Syntax:

options = Trip. GetOptions
COM – Interface:

HRESULT GetOptions([out, retval] IPCMOptions** options);

Part Type Description
options Options Options object

Remarks:
 PCMSGetOptions

GetOptionsEx method

Description:

Returns the extended trip options object. Options and
OptionsEx cannot be used together. For example, where
OptionsEx has been used to set the routing method, Options
cannot be used to return the current routing method.

Visual Basic Syntax:

options = Trip. GetOptionsEx
COM – Interface:

HRESULT GetOptionsEx([out, retval] IPCMOptionsEx** options);

Part Type Description
options OptionsEx OptionsEx object

TollAmount method

Description:

Available only if the PC*MILER|Tolls add-on module is installed.
Returns the toll amount for a trip in cents.

Visual Basic Syntax:

toll = Trip. TollAmount
COM – Interface:

HRESULT TollAmount([out, retval] long* cents);

 Chapter 9: Using the PC*MILER COM Interface 153

Part Type Description
toll long toll value in cents

Remarks:
 PCMSGetToll

TollBreakdown method

Description:

Available only if the PC*MILER|Tolls add-on module is installed.
Returns toll calculated using the specified discount program.

Visual Basic Syntax:

toll = Trip. TollBreakdown(discProgram, state)
COM – Interface:

HRESULT TollBreakdown([in] long discProgram, [in] BSTR
state, [out], retval] long* cents);

Part Type Description
toll long discounted toll in cents
discProgram long index of toll discount program
state string state, or empty string for all states

Remarks:
 PCMSGetTollBreakdown

SetVehicleConfig method

Description:

Enables route generation and toll cost calculation based on custom vehicle
dimensions.

Visual Basic Syntax:

trip.SetVehicleConfig (False, False, 120, 96, 48, 90000, 5, True)

Part Type Description
units bool False is English (default), True is Metric
overPerm bool permit for vehicle over 80,000 lbs. (default=False)
height long vehicle height (feet/inches or meters)
width long vehicle width
length long vehicle length
weight long vehicle weight
axle long number of axles
lcv bool multiple trailer (default=False)

Remarks:
 PCMSSetVehicleConfig

 PC*MILER|Connect User’s Guide 154

AddPing method

Description:

Add a lat/long ping to the trip’s list of pings. The pings added with this
are used to build a route using the ReduceCalculate method.

Visual Basic Syntax:

trip.AddPing (“41.471607N,74.384949W”)
COM – Interface:

HRESULT AddPing(BSTR pingLatLon);

Part Type Description
pingLatLon string latitude/longitude point

Remarks:
 PCMSAddPing

ReduceCalculate method

Description:

Calculate trip’s distance through all the added pings. Returns the distance
in tenths of a mile.

Visual Basic Syntax:

trip.ReduceCalculate (0.5, True)
COM – Interface:

HRESULT Reduce Calculate(double maxMilesOfRoute,
VARIANT_BOOL highwayOnly, [out,retval] long *miles);

Part Type Description
maxMilesOfRoute double maximum miles of route
highwayOnly bool if true use highways only

Remarks:
 PCMSReduceCalculate

FuelOptimize method

Description:

(Deprecated in Version 27.) Provides a COM interface to the
PCMSFuelOptimize interface. Requests the fuel stop locations from the
IDSC Web Service and updates trip with the fuel stops. Returns a large
report of the fuel stops returned from the provider.

Visual Basic Syntax:

trip.FuelOptimize ("", "200", "100", "6.25", 8096)

 Chapter 9: Using the PC*MILER COM Interface 155

COM – Interface:
HRESULT FuelOptimize(BSTR capacity, BSTR level, BSTR
mpg, [in] int repsize, [out, retval] BSTR * statusreport);

Part Type Description
vehicle string vehicle ID
capacity string capacity of fuel tank (if vehicle ID is supplied then

registered value will be used)
level string level in fuel tank – gallons
mpg string miles per gallon to two decimal places
repsize int report size recommended to use: 8096

Remarks:

 PC*MILER|Connect User’s Guide 156

9.4.3 Options OBJECT PROPERTIES AND METHODS

RouteType property (read/write)

Description:

Returns/sets the route type.

Visual Basic Syntax:

rtType = Options.RouteType
Options.RouteType = rtType

Part Type Description
rtType short route type

Remarks:
 PCMSSetCalcType, PCMSGetCalcType, and

Appendix B: Constants and Error Codes

BordersOpen property (read/write)

Description:

Returns/sets the status of borders.

Visual Basic Syntax:

borders = Options. BordersOpen
Options. BordersOpen = borders

Part Type Description
borders bool border status

Remarks:
 PCMSSetBordersOpen

Hub property (write)

Description:

Sets the hub mode.

Visual Basic Syntax:

Options. Hub = hub

Part Type Description
hub bool hub mode

Remarks:
 PCMSSetHubMode

 Chapter 9: Using the PC*MILER COM Interface 157

Miles property (read/write)

Description:

Returns/sets the units to miles (True) or kilometers (False).

Visual Basic Syntax:

ml = Options.Miles
Options.Miles = ml

Part Type Description
ml bool miles or km

Remarks:
 PCMSSetKilometers, PCMSSetMiles

AlphaOrder property (read/write)

Description:

Returns/sets the state order in reports.

Visual Basic Syntax:

alphaOrder = Options.AlphaOrder
Options.AlphaOrder = alphaOrder

Part Type Description
alphaOrder bool when True, states are listed in alphabetical

order; when False states are listed in the
order driven

Remarks:
 PCMSSetAlphaOrder

BreakHours property (read/write)

Description:

Returns/sets the trip break hours.

Visual Basic Syntax:

breakHours = Options.BreakHours
Options.BreakHours = breakHours

Part Type Description
breakHours long trip break hours

Remarks:

 PC*MILER|Connect User’s Guide 158

BreakWaitHours property (read/write)

Description:

Returns/sets the trip break wait hours.

Visual Basic Syntax:

breakWaitHours = Options.BreakWaitHours
Options.BreakWaitHours = breakWaitHours

Part Type Description
breakWaitHours long the trip break wait hours

Remarks:

CostPerLoadedMile property (read/write)

Description:

Returns/sets the trip cost per loaded mile.

Visual Basic Syntax:

cost = Options.CostPerLoadedMile
Options.CostPerLoadedMile = cost

Part Type Description
Cost long cost per loaded mile

Remarks:
 PCMSSetCost, PCMSGetCost

ShowFerryMiles property (write)

Description:

If set to true (default value), ferry miles are shown on report.

 Visual Basic Syntax:
Options.ShowFerryMiles = mode

Part Type Description
mode bool on/off show ferry miles

Remarks:
 PCMSSetShowFerryMiles

 Chapter 9: Using the PC*MILER COM Interface 159

HazType property (write)

Description:

Sets trip options for hazardous material routing.

Visual Basic Syntax:

Options. HazType(type)

Part Type Description
type short hazard type

Remarks:

PCMSSetHazOption. See the PC*MILER User’s Guide for details
about each HazMat route type.

hazType values in North America can be as follows:

Value HazType
0 Disabled
1 General * (see NOTE below)
2 Explosive
3 Inhalant
4 Radioactive
5 Corrosive
6 Flammable
7 Harmful to Water

hazType values in Europe and Oceania can be as follows:

Value Route Type:
0 Disabled
1 General * (see NOTE below)
2 Explosive
6 Flammable
7 Harmful toWater

NOTE: The “General” route type has been changed to “Other” in the PC*MILER
UI. They are identical route types and algorithms.

 PC*MILER|Connect User’s Guide 160

CustomMode property (write)

Description:

Sets custom mode to True or False.

Visual Basic Syntax:

Options. CustomMode (mode)

Part Type Description
mode bool custom mode

Remarks:
 PCMSSetCustomMode

ExchangeRate property (write)

Description:

Sets the exchange rate from U.S. to Canadian dollars, such as 9900
(99 cents), for toll reports.

Visual Basic Syntax:

Options.ExchangeRate = 12500

Part Type Description
exchangeRate long number for rate, e.g. 12500 which is the
 default value

Remarks:

PCMSSetExchRate

RouteLevel property (write)

Description:

Sets the route level.

Visual Basic Syntax:

Options.RouteLevel = True

Part Type Description
routeLevel bool when True use Streets routing
 when False use Highway routing

Remarks:

PCMSRouteLevel

 Chapter 9: Using the PC*MILER COM Interface 161

TollMode method

Description:

Available only if the PC*MILER|Tolls add-on module is installed.
Enables/disables toll fee calculation.

Visual Basic Syntax:

Options. TollMode (mode)

Part Type Description
mode long toll mode

Remarks:
 PCMSSetTollMode

Value Toll Mode

0 Disabled, no toll information

1 Cash toll amount

2 Discount toll amount

 PC*MILER|Connect User’s Guide 162

9.4.4 OptionsEx PROPERTIES AND METHODS

RouteType property (read/write)

Description:

Returns/sets the route type.

Visual Basic Syntax:

rtType = Options.RouteType
Options.RouteType = rtType

Part Type Description
rtType long route type

Remarks:
 PCMSSetCalcTypeEx, PCMSGetCalcTypeEx, and

Appendix B: Constants and Error Codes

OptionFlags property (read/write)

Description:

Returns/sets the route options flags.

Visual Basic Syntax:

rtType = Options.OptionFlags
Options.OptionFlags = rtType

Part Type Description
rtType long route type

Remarks:
 PCMSSetCalcTypeEx, PCMSGetCalcTypeEx, and

Appendix B: Constants and Error Codes

VehicleType property (read/write)

Description:

Reserved for future use. Must be set to zero.

Visual Basic Syntax:

rtType = Options.VehicleType

Remarks:
 PCMSSetCalcTypeEx, PCMSGetCalcTypeEx, and

Appendix B: Constants and Error Codes

 Chapter 9: Using the PC*MILER COM Interface 163

9.4.5 PickList PROPERTIES AND METHODS

Count property (read)

Description:

Returns the number of entries on the list.

Visual Basic Syntax:

num = PickList.Count

Part Type Description
num long number of entries on the list

Remarks:
 PCMSNumMatches

Entry method

Description:

Returns the requested entry on the list.

Visual Basic Syntax:

match = Trip.Entry(which)
COM – Interface:

HRESULT Entry(long which, [out, retval] BSTR* match);

Part Type Description
which long index
match string the entry on the list

Remarks:
 PCMSGetMatch

 PC*MILER|Connect User’s Guide 164

9.4.6 Report PROPERTIES AND METHODS

NumLines property (read)

Description:
 Returns the number of lines on the report.

Visual Basic Syntax:
 num =Report.NumLines

Part Type Description
num long

Remarks:
 PCMSNumRptLines

Type property (read)

Description:
 Returns the report type.

Visual Basic Syntax:
 reportType =Report.Type

Part Type Description
reportType short

NumBytes property (read)

Description:
 Returns the number of bytes in the report.

Visual Basic Syntax:
 num =Report.NumBytes

Part Type Description
num long num bytes in report

Remarks:
 PCMSNumRptBytes

 Chapter 9: Using the PC*MILER COM Interface 165

Text property (read)

Description:
 Returns the report text.

Visual Basic Syntax:
 text =Report.Text

Part Type Description
text string report text

Remarks:
 PCMSGetRpt

Line method

Description:
 Returns the requested report line.

Visual Basic Syntax:
 line =Report.Line(which)
COM – Interface:

HRESULT Line(long which, [out, retval] BSTR* line);

Part Type Description
which long index of the requested line
line string report line

Remarks:
 PCMSGetRptLine

 PC*MILER|Connect User’s Guide 166

9.4.7 HTMLReport PROPERTIES AND METHODS

NumBytes property (read)

Description:
 Returns the number of bytes in the report.

Visual Basic Syntax:
 num =HTMLReport.NumBytes

Part Type Description
num long num bytes in report

Remarks:
 PCMSNumHTMLRptBytes

Text property (read)

Description:
 Returns the report text.

Visual Basic Syntax:
 text =HTMLReport.Text

Part Type Description
text string report text

Remarks:
 PCMSGetHTMLRpt

 Chapter 9: Using the PC*MILER COM Interface 167

9.4.8 ReportData PROPERTIES AND METHODS

NumSegments property (read)

Description:

Returns the number of segments in the report.

Visual Basic Syntax:
 num =Report.NumSegments

Part Type Description
num short total number of segments in the report

NumLegs property (read)

Description:

Returns the number of legs in the trip.

Visual Basic Syntax:
 num =Report. NumLegs

Part Type Description
num short total number of legs in the trip

Segment method

Description:

Returns the segment requested by index.

Visual Basic Syntax:

segment =Report.Segment(which)
COM – Interface:

HRESULT Segment(short which, [out,retval] IPCMSegment**
segment);

Part Type Description
segment object object containing segment infomation
which short index

Remarks:
 PCMSGetNumSegments

 PC*MILER|Connect User’s Guide 168

ReportLeg method

Description:

Returns the leg requested by index.

Visual Basic Syntax:

leg =Report.ReportLeg(which)
COM – Interface:

HRESULT ReportLeg(short which, [out, retval]
IPCMLegInfo** leg);

Part Type Description
leg object object containing report leg information
which short index

 Chapter 9: Using the PC*MILER COM Interface 169

9.4.9 Segment PROPERTIES AND METHODS

State property (read)

Description:

Returns the state abbreviation for the segment.

Visual Basic Syntax:

state =Segment.State

Part Type Description
state string segment state

Dir property (read)

Description:

Returns the direction of the segment

Visual Basic Syntax:

dir = Segment.Dir

Part Type Description
dir string direction of the segment

Route property (read)

Description:

Returns the route name for the segment.

Visual Basic Syntax:

route = Segment.Route

Part Type Description
route string route name

 PC*MILER|Connect User’s Guide 170

Miles property (read)

Description:

Returns the segment miles.

Visual Basic Syntax:
miles = Segment.Miles

Part Type Description
miles long segment length

Minutes property (read)

Description:

Returns the segment minutes

Visual Basic Syntax:

min = Segment.Minutes

Part Type Description
min long time

Interchange property (read)

Description:

Returns the segment interchange

Visual Basic Syntax:

interchange = Segment.Interchange

Part Type Description
interchange string segment interchange

 Chapter 9: Using the PC*MILER COM Interface 171

Toll property (read)

Description:

Available only if the PC*MILER|Tolls add-on module is
installed. Returns the segment toll status.

Visual Basic Syntax:

toll =Report.Toll

Part Type Description
toll short 0 if toll

 PC*MILER|Connect User’s Guide 172

9.4.10 LegInfo PROPERTIES AND METHODS

TotMiles, LegMiles properties (read)

Description:

Returns leg/cumulative miles in tenths.

Visual Basic Syntax:

lMiles =LegReport.LegMiles
tMiles =LegReport.TotMiles

Part Type Description
tMiles long
lMiles long

TotCost , LegCost properties (read)

Description:

Returns leg/cumulative cost in cents.

Visual Basic Syntax:

lCost =LegReport.LegCost
tCost =LegReport.TotCost

Part Type Description
tCost long
lCost long

TotMinutes, LegMinutes properties (read)

Description:

Returns leg/cumulative time in minutes.

Visual Basic Syntax:

legMinutes = LegReport.LegMinutes
totMinutes = LegReport.TotMinutes

Part Type Description
legMinutes long
totMinutes long

 Chapter 9: Using the PC*MILER COM Interface 173

9.4.11 Double PROPERTIES AND METHODS

Count property (read)

Description:

Returns the number of coordinate entries.

Visual Basic Syntax:
 num = Double. Count

Part Type Description
num long total number of coordinate entries

Remarks:

PCMSLatLongsEnRoute

Entry method (read)

Description:

Returns the entry requested by index.

Visual Basic Syntax:

coord = Double. Entry(which)
COM – Interface:

HRESULT Entry(long which, [out, retval] double * coord);

Part Type Description
coord double a coordinate entry
which long index

Remarks:
 PCMSLatLongsEnRoute

 PC*MILER|Connect User’s Guide 174

9.4.12 OLE CONSTANTS

These constants are defined within the PC*MILER|Connect COM object:

typedef enum {
 CALC_PRACTICAL = 0,
 CALC_SHORTEST = 1,
 CALC_NATIONAL = 2,
 CALC_AVOIDTOLL = 3,
 CALC_AIR = 4,
 } RouteType;

 typedef enum {
 RPT_DETAIL = 0,
 RPT_STATE = 1,
 RPT_MILEAGE = 2
 RPT_ROADTYPE = 5
 } ReportType;

 typedef enum {
 LOOKUP_PARTIAL = 0,
 LOOKUP_EXACT = 1,
 LOOKUP_DEFAULT = 2
 } LookupType;

 typedef enum {
 CALCEX_TYPE_PRACTICAL = 1,
 CALCEX_TYPE_SHORTEST = 2,
 CALCEX_TYPE_AIR = 4
 } CalcExRouteType;

 typedef enum {
 CALCEX_OPT_AVOIDTOLL = 256,
 CALCEX_OPT_NATIONAL = 512,
 } CalcExOptionFlags;

 typedef enum {
 CALCEX_VEH_TRUCK = 0,
 CALCEX_VEH_AUTO = 0x01000000
 } CalcExVehicleType;

 PC*MILER|Connect User’s Guide 175

 Appendix A:
Location of Header Files,

Additional Documentation & Sample Code

The header files pcmsinit.h, pcmstrip.h, and pcmsdefs.h can be found in the C_CPP folder
of the PC*MILER|Connect installation (usually C:\ALK Technologies\PCMILER31\
Connect\C_CPP\StaticLink\pcmsrv32).

Sample code is in the StaticLink folder also (usually C:\ALK Technologies\PCMILER31\
Connect\C_CPP\StaticLink).

Other folders in the PC*MILER|Connect installation include additional files containing
sample code and additional documentation, along with descriptive ReadMe files.

A A
pp

en
di

x

 PC*MILER|Connect User’s Guide 176

Appendix B:

Constants and Error Code Descriptions

The following constants and error codes are also in the header file pcmsdefs.h, found
in the PC*MILER installation folder (usually C:\ALK Technologies\PCMILER31\
Connect\C_CPP\StaticLink\pcmsrv32).

Simple Routing Calculations Value (Decimal)
CALC_INVALID
CALC_PRACTICAL

-1
0

CALC_SHORTEST 1
CALC_NATIONAL 2
CALC_AVOIDTOLL 3
CALC_AIR 4
CALC_POV 5

Extended Routing Calculations Value (Decimal)
CALCEX_TYPE_PRACTICAL 1
CALCEX_TYPE_SHORTEST 2
CALCEX_TYPE_AIR 4
CALCEX_OPT_AVOIDTOLL 256
CALCEX_OPT_NATIONAL 512
CALCEX_VEH_TRUCK 0
CALCEX_VEH_AUTO 16777216

Road Types Value (Decimal)
ROADTYPE_INTERSTATE
ROADTYPE_MAJORHIGHWAY

1
2

ROADTYPE_PRIMARY 3
ROADTYPE_FERRY 4
ROADTYPE_SECONDARY 5
ROADTYPE_RAMP 6
ROADTYPE_LOCAL 7

Report Types Value (Decimal)
RPT_DETAIL 0
RPT_STATE 1
RPT_MILEAGE 2
RPT_XML 3
RPT_STREETNAME 4
RPT_ROADTYPE
RPT_ITINERARY

5
6

Order of States in Reports Value (Decimal)
STATE_ORDER 1
TRIP_ORDER 2

B A
pp

en
di

x

 Appendix B: Constants and Error Codes Descriptions 177

Time-Based Routing
Time Zones

UTC ref. Example city Value (Decimal)

TIME_ZONE_SYSTEM n/a -1
TIME_ZONE_LOCAL n/a -2
HAWAII -10 Honolulu 0
ALASKA -9 Anchorage 1
PACIFIC -8 Los Angeles 2
ARIZONA -7 (no DST) Phoenix 3
MOUNTAIN -7 Denver 4
CENTRAL -6 Chicago 5
EASTERN -5 New York 6
ATLANTIC -4 Halifax 7
NEWFOUNDLAND -3.5 St. John’s 8
GMT 0 London 9
CENTRALEUROPE +1 Paris 10
EASTERNEUROPE +2 Helsinki 11
WESTERNRUSSIA +4 (no DST) Moscow 12

Options Value (Hex)
OPTS_MILES 0x0001L
OPTS_CHANGEDEST 0x0002L
OPTS_HUBMODE 0x0004L
OPTS_BORDERS 0x0008L
OPTS_ALPHAORDER 0x0010L
OPTS_HEAVY 0x0020L
OPTS_FERRYMILES 0x0040L
OPTS_ERROR 0xFFFFL

Error Codes Value Message
PCMS_INVALIDPTR 101 Invalid pointer

PCMS_NOINIFILE 102 The INI file was not found

PCMS_LOADINIFILE 103 Could not load the INI file

PCMS_LOADGEOCODE 104 Could not load location database

PCMS_LOADNETWORK 105 Could not load the network database

PCMS_MAXTRIPS 106 Too many open trips (limit of 8)

PCMS_INVALIDTRIP 107 Invalid trip ID

PCMS_INVALIDSERVER 108 Invalid server ID

PCMS_BADROOTDIR 109 Could not find RootDir setting in INI file

PCMS_BADMETANETDIR 110 Invalid PCMNetDir setting

PCMS_NOLICENSE 111 License infraction: too many users, or
licenses not found

PCMS_TRIPNOTREADY 112 The trip is not ready to calculate

PCMS_INVALIDPLACE 113 Invalid place name (city, state not
found)

 PC*MILER|Connect User’s Guide 178

PCMS_ROUTINGERROR 114 Calculation failed: portions of trip are
invalid

PCMS_OPTERROR 115 Optimization failed: portions of the trip
are invalid

PCMS_OPTHUB 116 Cannot optimize a trip in HUB mode
PCMS_OPT2STOPS 117 Not enough stops to optimize the trip
PCMS_OPT3STOPS 118 Not enough stops to optimize without

changing destination
PCMS_NOTENOUGHSTOPS 119 Not enough stops to calculate the trip
PCMS_BADNETDIR 120 Bad network directory
PCMS_LOADGRIDNET 121 Error loading gridded network
PCMS_BADOPTIONDIR 122 Bad option directory
PCMS_DISCONNECTEDNET 123 Disconnected network
PCMS_NOTRUCKSTOP
PCMS_INVALIDREGIONID

124
125

Truck inaccessible stop
Invalid region ID

PCMS_CLOSINGERROR 126 Engine did not shut down properly
PCMS_NORTENGINE 127 Engine could not properly initialize

internal routing component
PCMS_NODATASERVER 128 Engine could not properly initialize

internal routing component
PCMS_SWITCHDIR 129 Connect could not switch the current

working directory for the directory
specified by ‘DLLPath’ in the INI file

PCMS_NOACTIVATE 135 Your product or add-on license has not
yet been activated

PCMS_EXPIRED 136 Your license has expired
PCMS_BADDLLPATH 137 Could not find the directory specified

by ‘DLLPath’ in the INI file.
PCMS_LOADLICDLL 138 Unable to load alk_license.dll or

alk_license64.dll
PCMS_LOADGRIDDLL 139 Unable to load alk_grid.dll or

alk_grid64.dll
PCMS_LOADDATADLL 140 Unable to load alk_data.dll or

alk_data64.dll
PCMS_NETUSER_EXCEED 157 Too many users connecting to the

network license, user count exceeded

PCMSLookup() Extended Error Codes Returned With Option 5

Error Value Explanation

Error: Bad postal code format 400 The data given as a postal code was not
properly formatted and could not be
parsed; see Appendix D for postal code
formats by country.

 Appendix B: Constants and Error Codes Descriptions 179

Error: No city or ZIP entered 410 Users entered only a state without a city
or ZIP to accompany it

Error: This ZIP is not usable for
routing

420 The given ZIP code cannot be used to
generate a route

Error: State invalid for region 430 The given state is not a valid state within
the current region

Error: No matching ZIP found 440 No zip was found that matches the given
postal code

Error: No matching city found 445 No city was found that matches the given
city name

Error: ZIP doesn’t match ST for given
city,ST

450 No entries were found where the given
zip resides in the specified state

Error: ZIP doesn’t match city for
given city,ST

455 No entries were found where the given
zip resides in the specified city

Error: No exact matches for city name 460 No results were found that exactly match
the entered city. Partial or similar
matches may have been found instead

Error: No ZIP code exists for input
city,ST

470 The given city, ST entry does not have
any valid ZIP codes associated with it

Error: No matching SPLC found 475 No SPLC was found that matches the
given code

Error: Not enough information
provided to locate the requested stop

500 No valid ZIP, city, or state tokens could
be parsed from the user’s input

Error: Street not found near the
provided coordinates

525 Returned if a street address plus lat/longs
was input and could not be found.

Warning: “There is a parity
mismatch with the address range”

1000 Returned if address number is within
the overall data range, but not in the odd
or even range for this link

Warning: “The address provided had
no number”

1010 Returned if the supplied address did not
contain a number, e.g. “Smith Ave.”
instead of “10 Smith Ave.”

Error: “The address provided has no
matches in the zip/city provided”

1020 Returned if the supplied address cannot
be found within the provided postal
code.

Warning: “The street type does not
match”

1030 Returned if the “best match” address
has a different street type from the input
address, i.e. “Smith St.” vs. “Smith Rd.”

Warning: “The street name is
misspelled”

1040 Returned if street was matched through
soundex, but did not match name on the
data link, e.g. “Main” vs. “Maine”

Warning: “Street has multiple exact
matches”

1050 Returned if the geocoder returned a
confidence level of 100%, but more
than one match

Warning: “No street name” 1060 Returned if there was no street name in
the address

 PC*MILER|Connect User’s Guide 180

Warning: “Street is not within zip
code specified”

1080 Returned if the ZIP code contained on
the link does not match the street name
specified

Warning: “The coordinates returned
are for the zip centroid”

1090 Returned if the best match is the ZIP
centroid (center point of the zip code
area) for the address received

Warning: “Invalid entry” 2000 Returned if the format and/or the
location data entered are invalid because
of error(s) not cited in any of the above
error codes

HOS-Specific Errors Value Message
PCMS_HOS_TRIP_NO_US_STOPS -200 “The trip does not contain any stops

in the United States.”
PCMS_HOS_TRIP_NOT_VALIDATED -201 “The trip has not been validated using

PCMSValidateRouteHOS()”
PCMS_HOS_CDT_ABOVE_MAX -202 “The Consecutive Drive Time is

above the maximum allowed value”
PCMS_HOS_TDT_ABOVE_MAX -203 “The Total Drive Time is above the

maximum allowed value”
PCMS_HOS_TODT_ABOVE_MAX -204 “The Total On Duty Time is above

the maximum allowed value”
PCMS_HOS_CDT_BELOW_MIN -205 “The Consecutive Drive Time is

below the minimum allowed value”
PCMS_HOS_TDT_BELOW_MIN -206 “The Total Drive Time is below the

minimum allowed value”
PCMS_HOS_TODT_BELOW_MIN -207 “The Total On Duty Time is below

the minimum allowed value.”
PCMS_HOS_ETDT_ABOVE_MAX -208 “The Estimated Total Drive Time is

above the maximum allowed value.”
PCMS_HOS_ETODT_ABOVE_MAX -209 “The Estimated Total On Duty Time

is above the maximum allowed
value.”

PCMS_HOS_TRIP_HUB_MODE_ON -210 “Hub mode is on” (HOS for hub
routing is not supported)

PCMS_HOS_TRIP_ HWY_ON -211 “Highway is on” (Streets routing
must be enabled for HOS routes)

 PC*MILER|Connect User’s Guide 181

Appendix C:

State/Province/Country Abbreviations

Jurisdictions in the United States, Canada, and Mexico
(For countries and country abbreviations in the North America region, see “North America” in the
Country Codes for All Worldwide Regions section of this appendix.)

States/Provinces in the United States & Canada

AL Alabama
AK Alaska
AB Alberta
AZ Arizona
AR Arkansas
BC British Columbia
CA California
CO Colorado
CT Connecticut
DE Delaware
DC Dist. of Columbia
FL Florida
GA Georgia
ID Idaho
IL Illinois
IN Indiana
IA Iowa
KS Kansas
KY Kentucky
LA Louisiana
ME Maine
MB Manitoba
MD Maryland
MA Massachusetts
MI Michigan
MN Minnesota
MS Mississippi
MO Missouri
MT Montana

A
pp

en
di

x C

 PC*MILER|Connect User’s Guide 182

NE Nebraska
NV Nevada
NB New Brunswick
NH New Hampshire
NJ New Jersey
NM New Mexico
NY New York
NL Newfoundland & Labrador
NC North Carolina
ND North Dakota
NT Northwest Territory
NS Nova Scotia
NU* Nunavut
OH Ohio
OK Oklahoma
ON Ontario
OR Oregon
PA Pennsylvania
PE Prince Edward Island
QC Quebec
RI Rhode Island
SK Saskatchewan
SC South Carolina
SD South Dakota
TN Tennessee
TX Texas
UT Utah
VT Vermont
VA Virginia
WA Washington
WV West Virginia
WI Wisconsin
WY Wyoming
YT Yukon Territory

* The same FIPS code, NU, is used for Nicaragua and the province of Nunavut, Canada in the
PC*MILER database.

 Appendix C: State/Province/Country Abbreviations 183

Mexican Estados
AG Aguascalientes
BJ Baja California
BS Baja California Sur
CP Campeche
CH Chiapas
CI Chihuahua
CU Coahuila de Zaragoza
CL Colima
DF Ciudad de Mexico (previously “Distrito Federal”)
DG Durango
GJ Guanajuato
GR Guerrero
HG Hidalgo
JA Jalisco
EM Mexico (Estado)
MH Michoacan de Ocampo
MR Morelos
NA Nayarit
NX * Nuevo Leon
OA Oaxaca
PU Puebla
QA Queretaro Arteaga
QR Quintana Roo
SL San Luis Potosi
SI Sinaloa
SO Sonora
TA Tabasco
TM Tamaulipas
TL Tlaxcala
VZ Veracruz
YC Yucatan
ZT Zacatecas

* Please note that by default, “NX” is used for Nuevo Leon because the province of

Newfoundland and Labrador in Canada already utilizes “NL” in the database. However, there
is an option that sets “NL” as the abbreviation for Nuevo Leon in the PC*MILER user
interface: File menu > Application Settings > Geocoding and under NL Abbreviation select
Use for Nuevo Leon.

 PC*MILER|Connect User’s Guide 184

Country Codes For All Worldwide Regions

Africa

COUNTRY NAME FIPS ISO2 ISO3 GENC2 GENC3
Algeria AG DZ DZA DZ DZA
Angola AO AO AGO AO AGO
Benin BN BJ BEN BJ BEN
Botswana BC BW BWA BW BWA
Burkina Faso UV BF BFA BF BFA
Burundi BY BI BDI BI BDI
Cameroon CM CM CMR CM CMR
Cape Verde CV CV CPV CV CPV
Central African Republic CT CF CAF CF CAF
Chad CD TD TCD TD TCD
Comoros CN KM COM KM COM
Congo Democratic Republic (Kinshasa) CG CD COD CD COD
Congo, Republic of the (Brazzaville) CF CG COG CG COG
Djibouti DJ DJ DJI DJ DJI
Egypt EG EG EGY EG EGY
Equatorial Guinea EK GQ GNQ GQ GNQ
Eritrea ER ER ERI ER ERI
Ethiopia ET ET ETH ET ETH
Gabon GB GA GAB GA GAB
Gambia GA GM GMB GM GMB
Ghana GH GH GHA GH GHA
Guinea GV GN GIN GN GIN
Guinea-Bissau PU GW GNB GW GNB
Ivory Coast (Côte d’Ivoire) IV CI CIV CI CIV
Kenya KE KE KEN KE KEN
Lesotho LT LS LSO LS LSO
Liberia LI LR LBR LR LBR
Libya LY LY LBY LY LBY
Madagascar MA MG MDG MG MDG
Malawi MI MW MWI MW MWI
Mali ML ML MLI ML MLI
Mauritania MR MR MRT MR MRT
Mauritius MP MU MUS MU MUS
Mayotte MF YT MYT YT MYT
Morocco MO MA MAR MA MAR
Mozambique MZ MZ MOZ MZ MOZ
Namibia WA NA NAM NA NAM
Niger NG NE NER NE NER
Nigeria NI NG NGA NG NGA

 Appendix C: State/Province/Country Abbreviations 185

COUNTRY NAME FIPS ISO2 ISO3 GENC2 GENC3
Reunion RE RE REU RE REU
Rwanda RW RW RWA RW RWA
Saint Helena SH SH SHN SH SHN
Sao Tome and Principe TP ST STP ST STP
Senegal SG SN SEN SN SEN
Seychelles SE SC SYC SC SYC
Sierra Leone SL SL SLE SL SLE
Somalia SO SO SOM SO SOM
South Africa SF ZA ZAF ZA ZAF
South Sudan OD SD SDW SS SSD
Sudan SU SD SDN SD SDN
Swaziland WZ SZ SWZ SZ SWZ
Tanzania TZ TZ TZA TZ TZA
Togo TO TG TGO TG TGO
Tunisia TS TN TUN TN TUN
Uganda UG UG UGA UG UGA
Western Sahara WI EH ESH EH ESH
Zambia ZA ZM ZMB ZM ZMB
Zimbabwe ZI ZW ZWE ZW ZWE

Asia

Bangladesh BG BD BGD BD BGD
Bhutan BT BT BTN BT BTN
British Indian Ocean Territory IO -- -- -- --
Brunei BX BN BRN BN BRN
Burma (Myanmar) BM MM MMR MM MMR
Cambodia CB KH KHM KH KHM
China CH CN CHN CN CHN
Guam GQ GU GUM GU GUM
Hong Kong HK HK HKG HK HKG
India IN IN IND IN IND
Indonesia ID ID IDN ID IDN
Japan JA JP JPN JP JPN
Korea, North KN KP PRK KP PRK
Korea, South KS KR KOR KR KOR
Laos LA LA LAO LA LAO
Macao MC MO MAC MO MAC
Malaysia MY MY MYS MY MYS
Maldives MV MV MDV MV MDV
Mongolia MG MN MNG MN MNG
Nepal NP NP NPL NP NPL
Northern Mariana Islands CQ MP MNP MP MNP

 PC*MILER|Connect User’s Guide 186

COUNTRY NAME FIPS ISO2 ISO3 GENC2 GENC3

Pakistan PK PK PAK PK PAK

Palau PS PW PLW PW PLW

Papua New Guinea PP PG PNG PG PNG

Philippines RP PH PHL PH PHL

Singapore SN SG SGP SG SGP

Solomon Islands BP SB SLB SB SLB

Sri Lanka CE LK LKA LK LKA

Taiwan TW TW TWN TW TWN

Thailand TH TH THA TH THA

Timor‐Leste TT ‐‐ TMP TL TLS

Vietnam VM VN VNM VN VNM

Europe

Akrotiri AX ‐‐ ‐‐ QZ XQZ

Albania AL AL ALB AL ALB

Armenia AM AM ARM AM ARM

Andorra AN AD AND AD AND

Austria AU AT AUT AT AUT

Azerbaijan AJ AZ AZE AZ AZE

Belarus BO BY BLR BY BLR

Belgium BE BE BEL BE BEL

Bosnia and Herzegovina BK BA BIH BA BIH

Bulgaria BU BG BGR BG BGR

Croatia HR HR HRV HR HRV

Cyprus CY CY CYP CY CYP

Czech Republic EZ CZ CZE CZ CZE

Denmark DA DK DNK DK DNK

Dhekelia DX ‐‐ ‐‐ XD XXD

Estonia EN EE EST EE EST

Faroe Islands FO FO FRO FO FRO

Finland FI FI FIN FI FIN

France FR FR FRA FR FRA

Georgia GG GE GEO GE GEO

Germany GM DE DEU DE DEU

Gibraltar GI GI GIB GI GIB

Greece GR GR GRC GR GRC

Guernsey GK ‐‐ ‐‐ GG GGY

Hungary HU HU HUN HU HUN

Iceland IC IS ISL IS ISL

Ireland EI IE IRL IE IRL

Isle of Man IM IM IMN IM IMN

Italy IT IT ITA IT ITA

 Appendix C: State/Province/Country Abbreviations 187

COUNTRY NAME FIPS ISO2 ISO3 GENC2 GENC3

Jersey JE ‐‐ ‐‐ JE JEY

Kazakhstan KZ KZ KAZ KZ KAZ

Kyrgyzstan KG KG KGZ KG KGZ

Latvia LG LV LVA LV LVA

Liechtenstein LS LI LIE LI LIE

Lithuania LH LT LTU LT LTU

Luxembourg LU LU LUX LU LUX

Macedonia MK MK MKD MK MKD

Malta MT MT MLT MT MLT

Moldova MD MD MDA MD MDA

Monaco MN MC MCO MC MCO

Montenegro MJ ME MNE ME MNE

Netherlands NL NL NLD NL NLD

Norway NO NO NOR NO NOR

Poland PL PL POL PL POL

Portugal PO PT PRT PT PRT

Romania RO RO ROU RO ROU

Russia RS RU RUS RU RUS

San Marino SM SM SMR SM SMR

Serbia RI SRB SRB RS SRB

Slovakia LO SK SVK SK SVK

Slovenia SI SI SVN SI SVN

Spain SP ES ESP ES ESP

Svalbard and Jan Mayen Islands SV SJ SJM XR XSV

Sweden SW SE SWE SE SWE

Switzerland SZ CH CHE CH CHE

Tajikistan TI TJ TJK TJ TJK

Turkey TU TR TUR TR TUR

Turkmenistan TX TM TKM TM TKM

Ukraine UP UA UKR UA UKR

United Kingdom UK GB GBR GB GBR

Uzbekistan UZ UZ UZB UZ UZB

Vatican City VT VA VAT VA VAT

Middle East
Afghanistan AF AF AFG AF AFG

Bahrain BA BH BHR BH BHR

Gaza Strip GZ ‐‐ XGZ XG XGZ

Iran IR IR IRN IR IRN

Iraq IZ IQ IRQ IQ IRQ

Israel IS IL ISR IL ISR

Jordan JO JO JOR JO JOR

 PC*MILER|Connect User’s Guide 188

COUNTRY NAME FIPS ISO2 ISO3 GENC2 GENC3

Kuwait KU KW KWT KW KWT

Lebanon LE LB LBN LB LBN

Oman MU OM OMN OM OMN

Palestinian Territory ‐‐ PS PSE PS PSE

Qatar QA QA QAT QA QAT

Saudi Arabia SA SA SAU SA SAU

Syria SY SY SYR SY SYR

United Arab Emirates AE AE ARE AE ARE

West Bank WE ‐‐ XWB XW XWB

Yemen YM YE YEM YE YEM

North America

Canada CA CA CAN CA CAN

Greenland GL GL GRL GL GRL

Mexico MX MX MEX MX MEX

Puerto Rico* PR* PR PRI PR PRI

Saint Pierre and Miquelon SB PM SPM PM SPM

United States US US USA US USA

Virgin Islands, U.S. VI VI VIR VI VIR

* Note: “PR” for Puerto Rico is a USPS code, not a FIPS code.

Oceania

American Samoa AQ AS ASM AS ASM

Australia AS AU AUS AU AUS

Cook Islands CW CK COK CK COK

Fiji FJ FJ FJI FJ FJI

French Polynesia FP PF PYF PJ PYF

French Southern and Antarctic Islands FS TF ATF TF ATF

Kiribati KR KI KIR KI KIR

Marshall Islands RM MH MHL MH MHL

Micronesia, Federated States of FM FM FSM FM FSM

Midway Island MQ UM ‐‐ QM XMW

Nauru NR NR NRU NR NRU

New Caledonia NC NC NCL NC NCL

New Zealand NZ NZ NZL NZ NZL

Niue NE NU NIU NU NIU

Norfolk Island NF NF NFK NF NFK

Pitcairn Islands PC PN PCN PN PCN

Samoa (Western Samoa) WS WS WSM WS WSM

Tokelau TL TK TKL TK TKL

 Appendix C: State/Province/Country Abbreviations 189

COUNTRY NAME FIPS ISO2 ISO3 GENC2 GENC3

Tonga TN TO TON TO TON

Tuvalu TV TV TUV TV TUV

Vanuatu NH VU VUT VU VUT

Wake Island WQ WQ XWK QW XWK

Wallis and Futuna WF WF WLF WF WLF

South America

Anguilla AV AI AIA AI AIA

Antigua and Barbuda AC AG ATG AG ATG

Argentina AR AR ARG AR ARG

Aruba AA AW ABW AW ABW

Bahamas BF BS BHS BS BHS

Barbados BB BB BRB BB BRB

Belize BH BZ BLZ BZ BLZ

Bermuda BD BM BMU BM BMU

Bolivia BL BO BOL BO BOL

Bonaire, Sint Eustatius, Saba ‐‐ ‐‐ ‐‐ BQ BES

Brazil BR BR BRA BR BRA

Caribbean Netherlands NT AN BES BQ BES

Cayman Islands CJ KY CYM KY CYM

Chile CI CL CHL CL CHL

Colombia CO CO COL CO COL

Costa Rica CS CR CRI CR CRI

Cuba CU CU CUB CU CUB

Curacao UC ‐‐ ‐‐ CUW CUW

Dominica DO DM DMA DM DMA

Dominican Republic DR DO DOM DO DOM

Ecuador EC EC ECU EC ECU

El Salvador ES SV SLV SV SLV

Falkland Islands (Islas Malvinas) FK FK FLK FK FLK

French Guiana FG GF GUF GF GUF

Grenada GJ GD GRD GD GRD

Guadeloupe GP GP GLP GP GLP

Guantanamo Bay ‐‐ ‐‐ ‐‐ A2 AX2

Guatemala GT GT GTM GT GTM

Guyana GY GY GUY GY GUY

Haiti HA HT HTI HT HTI

Honduras HO HN HND HN HND

Jamaica JM JM JAM JM JAM

Martinique MB MQ MTQ MQ MTQ

Montserrat MH MS MSR MS MSR

Nicaragua* NU* NI NIC NI NIC

 PC*MILER|Connect User’s Guide 190

COUNTRY NAME FIPS ISO2 ISO3 GENC2 GENC3

Panama PM PA PAN PA PAN

Paraguay PA PY PRY PY PRY

Peru PE PE PER PE PER

Saint Barthalemy TB ‐‐ BLM BL BLM

Saint Kitts and Nevis Islands SC KN KNA KN KNA

Saint Lucia ST LC LCA LC LCA

Saint Martin RN ‐‐ MAF MF MAF

Saint Vincent and the Grenadines VC VC VCT VC VCT

Sint Maarten NN ‐‐ SXM SX SXM

Suriname NS SR SUR SR SUR

Trinidad and Tobago TD TT TTO TT TTO

Turks and Caicos Islands TK TC TCA TC TCA

Uruguay UY UY URY UY URY

Venezuela VE VE VEN VE VEN

Virgin Islands, British VG VG VGB VG VGB

 * The same FIPS code, NU, is used for Nicaragua and the province of Nunavut, Canada in the PC*MILER
database.

Official Sources

FIPS Country Codes:
http://geonames.nga.mil/ggmagaz/geonames4.asp and
http://www.state.gov/s/inr/rls/4250.htm

ISO2 Country Codes:
http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm and
http://www.iso.org/iso/english_country_names_and_code_elements#s

ISO 3 Country Codes:
http://unstats.un.org/unsd/methods/m49/m49alpha.htm

GENC2 and GENC3 Country Codes (Geopolitical Entities, Names and Codes):
Issued by the National Geospatial-Intelligence Agency
https://www1.nga.mil/Pages/default.aspx

 PC*MILER|Connect User’s Guide 191

Appendix D:

Formats for Postal Codes by Country

Legend:
A = alphabetic (A,B,C,…Z)
N = numeric (0,1,2,...9)

North America
Canada
ANA NAN or ANANAN

Mexico, starting in Version 25
NNNNN

Puerto Rico, starting in Version 27.1
NNNNN

United States
NNNNN

South America
Brazil, starting in Version 24.1
NNNNN

Europe
United Kingdom
AANA N or AAN N or AANN N
or, starting in Version 24.1, AANAN or AANN or AANNN
or, starting in Version 25.1, AANA NAA or AANANAA or AAN NAA or
 AANNAA or AANN NAA or AANNNAA

France, Germany, Italy, Vatican City, Spain, and Finland
NNNNN

Russian Federation, starting in Version 22.1
NNNNNN

Romania, starting in Version 23.1
NNNNNN

Estonia and Croatia, starting in Version 22.1
NNNNN

Lithuania, starting in Version 23.1
NNNNN

D A
pp

en
di

x

 PC*MILER|Connect User’s Guide 192

Andorra, starting in Version 26.1
AANNN

Monaco, starting in Version 26.1
NNNNN

Ukraine and Turkey, starting in Version 24.1
NNNNN

Netherlands, Belgium, Luxemburg, Austria, Switzerland, Liechtenstein,
Denmark, Norway and Hungary
NNNN

Latvia and Slovenia, starting in Version 22.1
NNNN

Bulgaria, starting in Version 23.1
NNNN

Iceland
NNN

Ireland (Dublin only)
NN (single digit postcodes N are not supported for input in PC*MILER)

Poland
NN-NNN
or, starting in Version 24.1: NNNNN

Portugal
NNNN
or, starting in Version 24.1: NNNN-NNN or NNNNNNN

San Marino, starting in Version 26.1
NNNNN

Sweden
NNN
or, starting in Version 22.1: NNN NN or NNNNN

Czech Republic and Slovakia
NNN NN or NNNNN

Greece, starting in Version 22.1
NNN NN or NNNNN

Africa
Lesotho, starting in Version 27.1
NNNN

 Appendix D: Formats for Postal Codes by Country 193

South Africa, starting in Version 24.1
NNNN

Swaziland, starting in Version 27.1
ANNN

Asia
Japan, starting in Version 24.1
NNN-NNNN or NNNNNNN

India, starting in Version 24.1
NNNNNN

Indonesia, starting in Version 27.1
NNNNN

Malaysia, starting in Version 27.1
NNNNN

Taiwan, starting in Version 27.1
NNN

Thailand, starting in Version 27.1
NNNNN

Oceania
Australia, starting in Version 24.1
NNNN

New Zealand, starting in Version 27.1
NNNN

Federated States of Micronesia, Guam, Marshall Islands, Northern Mariana Islands,
and Palau, starting in Version 27.1
NNNNN

 PC*MILER|Connect User’s Guide 194

Appendix E:

 Trouble-shooting Guide

Please consult the following list of frequently asked questions before calling tech
support.

To ensure you have installed PC*MILER and PC*MILER|Connect properly, run
the Connect Tester which can be found by going to Start > Programs > PCMILER
31 > Connect Tester. It should return a window with a version number, and a whole
page of routing information. If an error is returned, review the solutions listed
below. If you do not find an answer, contact technical support.

Running your application generates the error ‘Cannot find
PCMSRV32.DLL’

This error is caused by an incorrect installation. To run, PC*MILER|Connect must
find the dynamic link library PCMSRV32.DLL, DATASERVER.DLL,
RTENGINE.DLL, PCMGCODE.DLL, PCMNET.DLL somewhere in your
path. By default, it looks in your Windows folder.

⇒ Solution: Copy PCMSRV32.DLL to your Windows folder (usually
C:\WINDOWS), or reinstall the minimal installation of PC*MILER|Connect. If
you choose not to install PC*MILER|Connect in your Windows folder, that folder
must be in your PATH.

“Pcmserver object not found”

The Server_Demo.asp that was installed with Connect is not working. This error
is caused by an incorrect installation.

⇒ Solution: Try the following steps:

1. Check that the PC*MILER user interface application was
properly installed.

2. Check that the global.asa file creates the object.
3. Make sure the internet server was restarted after the addition of

this demo.
4. Check that IIS properties for this project have proper

permissions.
5. It is recommended that this application run in a separate memory

space.

PC*MILER|Connect cannot find the INI file

E A
pp

en
di

x

 Appendix E: Trouble-shooting Guide 195

PC*MILER|Connect cannot locate the INI file when your application calls
PCMSOpenServer().

⇒ Solution: The PC*MILER|Connect INI file (PCMSERVE.INI) must be installed
in your Windows or WINNT folder, or reside in the same folder as the
PCMSRV32.DLL.

Mileage discrepancies occur with PC*MILER|Streets data installed

PC*MILER|Streets local street data is installed with PC*MILER, and you come
across mileage discrepancies using Connect. This can happen if PC*MILER is set
to use an air distance from the midpoint of the nearest highway segment to the stop.

⇒ Solution: Open the PCMSERVE.INI file in your Windows or WINNT folder, and
make sure the UseStreets setting is set to TRUE under [Options]. This will
cause local street mileage to be included in route calculations.

UseStreets=TRUE

Making changes to the INI file has no effect

Making changes to the INI file has no effect, because the INI file is only re-read
when PC*MILER|Connect is initially loaded into memory the first time. INI file
settings are shared between all applications using PC*MILER|Connect.

⇒ Solution: Shut down all applications making use of PC*MILER|Connect, make
any changes you want in the INI file, then restart your custom applications. Exit
and restart Windows completely if you suspect that PC*MILER|Connect still
wasn’t unloaded. If your changes still do not take effect:

∗ Search your disk for multiple copies of the INI file and DLL.
Eliminate any duplicate copies.

∗ Make sure that the format of the INI file is correct. See the examples
in Appendix I of this User’s Guide for the correct format.

You have problems optimizing a list of stops

Optimizing a list of stops is a time consuming computation: the distance between
each possible pair of stops is calculated, then the best ordering of stops is
determined. However, if PC*MILER|Connect never returns control to your
program while optimizing your stops, you may have run into some of the
algorithm’s limitations.

⇒ Solution: The error could be any of the following.

 PC*MILER|Connect User’s Guide 196

∗ Check that you are not running in Hub mode:
PC*MILER|Connect will not resequence stops in hub mode.

∗ Make sure that there are at least 3 stops in your trip (4 if the
destination is fixed – see below). Optimizing only two stops is
not valid.

∗ If you set the option ChangeDest to FALSE using
PCMSSetResequence(), then you must have at least 4 stops
in your trip, because if the origin and destination are fixed, then
optimizing only one stop between them is invalid.

 PC*MILER|Connect User’s Guide 197

Appendix F:

The TCP/IP Interface

This software provides a way to interact with the PC*MILER Connectivity (DLL)
Products running on Windows personal computers over a TCP/IP network from
any other computer platform. All of the applicable functions of the Connectivity
Products listed below are supported:

• PC*MILER|Connect • PC*MILER|Hazmat-Connect
• PC*MILER|Streets-Connect • DTOD|Connect

NOTE on SYSTEM RESTARTS: It is a best practice to restart your system that
integrates with PC*MILER|Connect on a regular basis such as once per week. This
is due to the fact that the Windows operating system resources such as memory,
disk space and TCP/IP ports may be in use by PC*MILER and other vendor
applications. A system reboot ensures that these resources are returned to the
Windows OS and reduces the chance that PC*MILER will slow down due to lack
of operating system resources. ALK recommends rebooting at least once per week,
when users are least affected by the system outage.

Important Changes to the Interface

PC*MILER|Connect is thread-safe. The TCP/IP Interface no longer disconnects
automatically (if version 14 or higher software is used) and thus can support true
simultaneous connections.

Hardware Requirements

• PC with a 1.5-2 GHz processor and TCP/IP Capability
• UNIX or other host with TCP/IP Capability
• Physical Connection (cable)
• An additional 3 MB hard disk space

Software Requirements

• Microsoft Windows (7, 8 or 10)
• PC*MILER or PC*MILER|Streets (Version 31)
• PC*MILER|Connect
• Client software on the UNIX host (sample PERL

application provided)

F A
pp

en
di

x

 PC*MILER|Connect User’s Guide 198

1. Installation

The installation program copies the PC*MILER TCP/IP files into the default
directory: C:\ALK Technologies\PCMILER31\tcpip.

PC*MILER|Connect must be installed prior to running the TCP/IP interface. The
interface program (pcmsock.exe) or the Windows Service (tcpsvc.exe) requires a
command-line parameter — a unique port number to which they will be listening.
An optional parameter can be used to designate the thread number.

In addition, a sample client script (simple.pl) is included. It is intended to run on
the client (UNIX, VMS, etc.) system. The examples are PERL scripts utilizing
some features of PERL v.5 which must be installed in order to run the examples.

For PC*MILER|Connect:
pcmsock PC_MILER 2001
or
pcmsock PC_MILER 2001 NA

To set the thread number to 4 (default to 64):
pcmsock PC_MILER 2001 4
or
pcmsock PC_MILER 2001 NA 4

The server program comes with a tester program: tcptest.exe to connect to
PC*MILER|Connect. This test program sends commands to the server engine that
is running via TCP/IP. It includes a sample trip (trip.txt) to send to the engine.

2. Syntax (do not include brackets)

pcmsock [product code] [port number] [dataset code]

(The parameters below are to be used as the Service’s ‘start’ parameters. Dataset Code
is optional. When the parameter is set, the dataset name takes precedence over the
default region set in pcmserve.ini.)

Product Code Product Name
PC_MILER = PC*MILER|Connect
PC_MILERSTR = PC*MILER|Streets-Connect
PC_DTOD = DTOD|Connect
PC_ETA = PC*MILER|ETAServer
PC_HAZMAT

Dataset Code

= PC*MILER|Hazmat-Connect

Dataset Name

 Appendix F: The TCP/IP Interface 199

NA
AF
AS
EU
ME
OC
SA

= North America
= Africa
= Asia
= Europe
= Middle East
= Oceania
= South America

3. Interface Specifics

The interface is completely text based. One can use a telnet application to test the
installation and familiarize oneself with the interface. For example (assuming that
the host PC has a 127.0.0.1 address):

For PC*MILER|Connect:
• telnet 127.0.0.1 [Port #]

When the connection is made, the host PC (server) sends a prompt ending with the
word READY. All of the routing functions listed in the corresponding Connectivity
manuals are available. However, there are a few differences in the syntax.
PC*MILER|Connect functions do not require (and will not accept) the ServerID
parameter. The strings in the parameters must be quoted if they contain commas
and/or parentheses.

Functions that return values in the user-supplied parameters do not use them in
the TCP/IP version. Instead, they return these values on a separate line.

Syntax errors (wrong spelling of functions, missing parameters, etc.) will result in
textual error messages.

Errors in parameters (which cannot be caught by the parser) will result in error
codes from the underlying PC*MILER|Connect DLL.

4. Sample Code

For sample code, please refer to the SIMPLE.PL file in the TCPIP folder of your
PC*MILER installation (usually C:\ALK Technologies\PCMILER31\TCPIP).

 PC*MILER|Connect User’s Guide 200

Appendix G:

 Alphabetical Function Index

/*COM function*/ AddPing (trip method), 154
/*COM function*/ AddStop (trip method), 144
/*COM function*/ AFLinks (trip method), 141
/*COM function*/ AFLinksClear (trip method), 141
/*COM function*/ AFLoad (server method), 130
/*COM function*/ AFLoadForRegion (server method), 131
/*COM function*/ AFSave (server method), 131
/*COM function*/ AFSaveForRegion (server method), 131
/*COM function*/ AlphaOrder (options property), 157
/*COM function*/ BordersOpen (options property), 156
/*COM function*/ BreakHours (options property), 157
/*COM function*/ BreakWaitHours (options property), 158
/*COM function*/ CalcDistance (server method), 133
/*COM function*/ CalcDistance2 (server method), 133
/*COM function*/ CalcDistance3 (server method), 134
/*COM function*/ CheckPlaceName (server method), 132
/*COM function*/ CityToLatLong (server method), 132
/*COM function*/ ClearStops (trip method), 146
/*COM function*/ CostPerLoadedMile (options property), 158
/*COM function*/ Count (double property), 173
/*COM function*/ Count (picklist property), 163
/*COM function*/ CustomMode (options property), 160
/*COM function*/ DefaultRegion (server property), 130
/*COM function*/ DeleteStop (trip method), 145
/*COM function*/ Dir (segment property), 169
/*COM function*/ DistanceToRoute (trip method), 148
/*COM function*/ Entry (double method), 173
/*COM function*/ Entry (picklist method), 163
/*COM function*/ ErrorCode (server property), 129
/*COM function*/ ErrorString (server property), 129
/*COM function*/ ErrorStringEx (trip property), 141
/*COM function*/ ExchangeRate (options property), 160
/*COM function*/ FuelOptimize (trip method), 154
/*COM function*/ GetFmtPickList (server method), 135
/*COM function*/ GetHTMLReport (trip method), 148
/*COM function*/ GetLRPickList (server method), 136
/*COM function*/ GetOptions (trip method), 152
/*COM function*/ GetOptionsEx (trip method), 152
/*COM function*/ GetPickList (server method), 135
/*COM function*/ GetReport (trip method), 147
/*COM function*/ GetReportData (trip method), 151

G A
pp

en
di

x

 Appendix G: Alphabetical Function Index 201

/*COM function*/ GetStop (trip method), 145
/*COM function*/ GetStop2 (trip method), 145
/*COM function*/ HazType (options property), 159
/*COM function*/ Hub (options property), 156
/*COM function*/ ID (server property), 128
/*COM function*/ ID (trip property), 140
/*COM function*/ Interchange (segment property), 170
/*COM function*/ LatLongAtMiles (trip method), 150
/*COM function*/ LatLongAtMinutes (trip method), 150
/*COM function*/ LatLongsEnRoute (trip method), 151
/*COM function*/ LatLongToCity (server method), 132
/*COM function*/ LegCost (legInfo property), 172
/*COM function*/ LegMiles (legInfo property), 172
/*COM function*/ LegMinutes (legInfo property), 172
/*COM function*/ Line (report method), 165
/*COM function*/ LLToPlace (trip method), 144
/*COM function*/ LocationAtMiles (trip method), 149
/*COM function*/ LocationAtMinutes (trip method), 149
/*COM function*/ Miles (options property), 157
/*COM function*/ Miles (segment property), 170
/*COM function*/ Minutes (segment property), 170
/*COM function*/ NewTrip (server method), 137
/*COM function*/ NumBytes (HTMLreport property), 166
/*COM function*/ NumBytes (report property), 164
/*COM function*/ NumLegs (reportData property), 167
/*COM function*/ NumLines (report property), 164
/*COM function*/ NumPOICategories (server method), 136
/*COM function*/ NumRegions (server property), 130
/*COM function*/ NumSegments (reportData property), 167
/*COM function*/ NumStops (trip method), 142
/*COM function*/ NumTollDiscounts (server method), 138
/*COM function*/ OnRoad (trip property), 140
/*COM function*/ Optimize (trip method), 146
/*COM function*/ OptionFlags (optionsEx property), 162
/*COM function*/ POICategoryName (server method), 138
/*COM function*/ ProductName (server property), 128
/*COM function*/ ProductVersion (server property), 128
/*COM function*/ ReduceCalculate (trip method), 154
/*COM function*/ Region (trip property), 140
/*COM function*/ RegionName (server method), 137
/*COM function*/ ReportLeg (reportData method), 168
/*COM function*/ Route (segment property), 169
/*COM function*/ RouteLevel (options property), 160
/*COM function*/ RouteType (options property), 156
/*COM function*/ RouteType (optionsEx property), 162
/*COM function*/ Segment (reportData method), 167
/*COM function*/ SetDefOptions (trip method), 144
/*COM function*/ SetVehicleConfig (trip method), 153

 PC*MILER|Connect User’s Guide 202

/*COM function*/ ShowFerryMiles (options property), 158
/*COM function*/ State (segment property), 169
/*COM function*/ StopLoaded (trip method), 146
/*COM function*/ Text (HTMLreport property), 166
/*COM function*/ Text (report property), 165
/*COM function*/ Toll (segment property), 171
/*COM function*/ TollAmount (trip method), 152
/*COM function*/ TollBreakdown (trip method), 153
/*COM function*/ TollDiscountName (server method), 138
/*COM function*/ TollMode (options method), 161
/*COM function*/ TotCost (legInfo property), 172
/*COM function*/ TotMiles (legInfo property), 172
/*COM function*/ TotMinutes (legInfo property), 172
/*COM function*/ TravelDistance (trip method), 143
/*COM function*/ TravelTime (trip method), 142
/*COM function*/ Type (report property), 164
/*COM function*/ UseShapePts (trip method), 143
/*COM function*/ Valid (server property), 129
/*COM function*/ VehicleType (optionsEx property), 162

PCMSAbout, 16
PCMSAddStop, 9, 21, 30
PCMSAFActivateRegion, 76
PCMSAFActivateSet, 76
PCMSAFExportRegion. See MS
PCMSAFExportSet, 76
PCMSAirDistanceToRte2, 75
PCMSAirDistToRte, 75
PCMSAnglicize, 38
PCMSCalcDistToRoute, 74
PCMSCalcTrip, 20
PCMSCalculate, 9, 21, 73
PCMSCheckPlaceName, 34
PCMSCityToLatLong, 44
PCMSClearStops, 9, 20, 22, 33
PCMSCloseServer, 9, 18
PCMSCountryList, 43
PCMSCountryListItem, 43
PCMSCreateManagedRouteMsgBytes, 108
PCMSDefaults, 55
PCMSDeleteStop, 31
PCMSDeleteTrip, 9, 18, 20
PCMSFindFuelStopsAlongRoute, 88
PCMSFindFuelStopsAlongRoute2, 89
PCMSFindPOIsAlongRoute, 84, 85
PCMSGeofenceActivateSet, 77
PCMSGeofenceExportSet, 77
PCMSGetAFMsgBytes, 109

 Appendix G: Alphabetical Function Index 203

PCMSGetCalcType, 46, 48
PCMSGetCalcTypeEx, 46, 49
PCMSGetCost, 47, 52
PCMSGetDefaultRegion, 39, 40
PCMSGetDuration, 22
PCMSGetETA, 60
PCMSGetETD, 61
PCMSGetFmtMatch2, 37
PCMSGetFmtMatch3, 37
PCMSGetFmtMatch4, 9, 37
PCMSGetFPARPOICategoryName, 83
PCMSGetFuelProviders, 87
PCMSGetGovernorSpeed, 50
PCMSGetHOSRouteReport, 94
PCMSGetHTMLRpt, 70
PCMSGetLegInfo, 72
PCMSGetLocAtMiles, 65
PCMSGetLocAtMinutes, 65
PCMSGetLocRadItem, 67
PCMSGetManagedRouteMsgBytes, 9, 106
PCMSGetMatch, 35, 36
PCMSGetNumFPARPOICategories, 83
PCMSGetNumMilesDecimals, 46, 51
PCMSGetNumRoutingProfiles, 57
PCMSGetNumSegments, 71
PCMSGetOptions, 54
PCMSGetPOIAlongRouteResult, 86
PCMSGetRegionName(), 40
PCMSGetRoadSpeed, 47, 52
PCMSGetRouteSyncMsg, 110
PCMSGetRoutingProfileName, 58
PCMSGetRpt, 69
PCMSGetRptLine, 69
PCMSGetSegment, 71
PCMSGetStop, 31
PCMSGetStopOptions, 92
PCMSGetStopType, 32
PCMSGetTollDiscountName, 25
PCMSGetTravelTimes, 102
PCMSLatLongAtMiles, 66
PCMSLatLongAtMinutes, 66
PCMSLatLongsEnRoute, 66
PCMSLatLongToAddress, 45
PCMSLatLongToCity, 44
PCMSLocRadLookup, 67
PCMSLookup, 34, 37, 178
PCMSLookUp, 9
PCMSMatrixAddDepartDayAndTime, 100

 PC*MILER|Connect User’s Guide 204

PCMSMatrixAddOrigin, 100
PCMSMatrixAddStop, 99
PCMSMatrixAppendStop, 99
PCMSMatrixCalculate, 99
PCMSMatrixClear, 99
PCMSMatrixGetCell, 101
PCMSMatrixGetCell2, 101
PCMSMatrixGetDepartTimeCount, 101
PCMSMatrixGetStopCount, 99
PCMSMatrixSetComputeTollandStateMiles, 102
PCMSMatrixSetComputeTollDollars, 102
PCMSMatrixSetDateOption, 100
PCMSMatrixSetDepartDayAndTime, 100
PCMSMatrixSetMaxAirMiles, 102
PCMSMatrixSetOptions, 99
PCMSMatrixSetThreadCount, 102
PCMSNewTrip, 19, 20
PCMSNewTripWithRegion, 8, 9, 39, 40
PCMSNumHTMLRptBytes, 70
PCMSNumLegs, 72
PCMSNumMatches, 37
PCMSNumPOICategories, 66
PCMSNumRegions(), 40
PCMSNumRptBytes, 69
PCMSNumStops, 33
PCMSNumTollDiscounts, 25
PCMSOpenServer, 8, 17
PCMSOptimize, 9, 73
PCMSPOICategoryName, 67
PCMSSetAccessRule, 71
PCMSSetAlphaOrder, 47, 52
PCMSSetAnglicize, 39
PCMSSetArrivalTime, 60
PCMSSetBordersOpen, 46, 51
PCMSSetCalcType, 46, 48
PCMSSetCalcTypeEx, 9, 46, 49
PCMSSetCost, 47, 52
PCMSSetCostOptions, 64
PCMSSetCustomMode, 47, 52, 75
PCMSSetDepartureTime, 59
PCMSSetElevationDiscouraged, 46, 50
PCMSSetElevationLimit, 46, 51
PCMSSetExchRate, 30
PCMSSetFerryDiscouraged, 46, 50
PCMSSetHazOption, 78
PCMSSetHOSAvailableTime, 92, 93
PCMSSetHubMode, 73
PCMSSetKilometers, 46, 51

 Appendix G: Alphabetical Function Index 205

PCMSSetLoaded, 46, 49
PCMSSetMiles, 9, 47, 51
PCMSSetNLAbbreviation, 42
PCMSSetNumMilesDecimals, 14, 22, 46, 51
PCMSSetOptions, 54
PCMSSetProfileName, 57
PCMSSetResequence, 9, 73
PCMSSetRoadSpeed, 47, 52
PCMSSetRoadSpeedType, 61
PCMSSetRouteLevel, 10, 15, 47, 52, 111
PCMSSetRoutingProfileName, 57
PCMSSetShowFerryMiles, 46, 51
PCMSSetStopAsWaypoint, 74
PCMSSetStopOptions, 91
PCMSSetTollMode, 24
PCMSSetVehicleConfig, 27, 28, 56
PCMSSetVehicleType, 47, 52
PCMSStateList, 43
PCMSStateListItem, 43
PCMSTrafficStatus, 62
PCMSTranslateAlias, 77
PCMSValidateRouteHOS, 94
PCMSZipCodeMexicoOnly(), 42
PCMSZipCodeOption(), 42
PCMSZipCodeUSAndMexico(), 42
PCMSZipCodeUSOnly(), 42

 PC*MILER|Connect User’s Guide 206

Appendix H:

Deprecated Functions & Options

The table below lists PC*MILER|Connect API’s and options that have been
deprecated, with alternate functionality where it exists.

NOTE on ALK’s DEPRECATION POLICY: If the “deprecated” status is
applied to an API, it indicates that the API should be avoided when interfacing to
PC*MILER. ALK generally deprecates an API when a better alternative has been
developed, in order to encourage users to work with the newer functionality.

Although deprecated API’s may remain in the software, their use can produce
warning messages and/or non-optimal results. Features are deprecated, rather than
immediately removed, in order to provide backward compatibility and give
developers who have been using the feature time to bring their code into compliance
with the new standards. A deprecated API may be removed from the product in the
future.

If a deprecated API is used in your interface to PC*MILER, when logging is turned
on, a message will indicate where interface changes are suggested to bring your
code into compliance as well as for best performance.

API/Option Name Deprecated
in Version Alternate Functionality

GEOCODING Functions:

PCMSCityToLatLong 30 PCMSLookup() with
PCMSGetFmtMatch4()

PCMSLatLongToCity 30 PCMSLookup()

PCMSLatLongToAddress 30 PCMSLookup()

PCMSZipCodeUSAndMexico 30 PCMSZipCodeOption()

PCMSZipCodeMexicoOnly 30 PCMSZipCodeOption()

PCMSZipCodeUSOnly 30 PCMSZipCodeOption()

PCMSAddressToLatLong 29

PCMSNewTrip(), PCMSLookup() with
option 5 to get extended geocoding error
codes for cases where you do not have an
exact match, then PCMSGetFmtMatch4 ()
and PCMSDeleteTrip()

PCMSAddressToLatLong2 29
PCMSNewTrip(), PCMSLookup() with
option 5 to get extended geocoding error
codes for cases where you do not have an

H A
pp

en
di

x

 Appendix H: Deprecated Functions & Options 207

API/Option Name Deprecated
in Version Alternate Functionality

exact match, then PCMSGetFmtMatch4 ()
and PCMSDeleteTrip()

PCMSAddStop2 29

Stop validation via PCMSLookup() with
option 5 to get extended geocoding error
codes for nonexact matches, if necessary
PCMSGetMatch() to get a routable stop and
PCMSAddStop()

PCMSCheckPlaceName 29
PCMSLookup() with option 5 to get
extended geocoding error codes for cases
where you do not have an exact match

PCMSConvertLLToPlace 27 None

PCMSGetExactLevel 27 None

PCMSGetMaxTrustLevel 29 None

PCMSGetTrustLevel 29 None

PCMSSetExactLevel 27 None

ROUTING Functions:

PCMSAFLoad 26 Use PCMSSetCustomMode() and
PCMSAFActivateSet()

PCMSAFLoadForRegion 26 Use PCMSSetCustomMode() and
PCMSAFActivateSet()

PCMSAFSave 26 Create avoid/favor sets in PC*MILER UI

PCMSAFSaveForRegion 26 Create avoid/favor sets in PC*MILER UI

PCMSAFLinks 30 Use PCMSSetCustomMode() and
PCMSAFActivateSet()

PCMSAFLinksClear 30 See above

PCMSGetNumRouteLinks 27 None

PCMSGetRouteInfo 27 None

PCMSLocRadLookup2 29 PCMSLocRadLookup()

PCMSMatrixLoadStopsFromFile 28 None

PCMSSetOnRoad 29 None

PCMSSetRoadNameOnly 29 None

PCMSUpdateRouteInfo 27 None

ROUTE Options:

PCMSSetOptions 30 Use API’s for individual options

PCMSGetOptions 30 None

PCMSSetProfileName 30 PCMSSetRoutingProfileName()

 PC*MILER|Connect User’s Guide 208

API/Option Name Deprecated
in Version Alternate Functionality

OPTS_FERRYDISTANCE
option flag 29

OPTS_FERRYDISTANCE
option flag

PCMSSetBorderWaitHours 29 None

PCMSSetBreakHours 29 None

PCMSSetBreakWaitHours 29 None

PCMSGetBorderWaitHours 29 None

PCMSGetBreakHours 29 None

PCMSGetBreakWaitHours 29 None

PCMSGetRemainingHoursOfService 29 None

PCMSSetRemainingHoursOfService 29 None

PCMSSetDefaultRegion 29 PCMSNewTripWithRegion()

PCMSSetOldMode 27 None

PCMSSetOldModeForRegion 27 None

PCMSSetUseShapePts 27 None

TIME & DISTANCE CALC:

ROADTYPE_DIVIDED defined constant 30 ROADTYPE_MAJORHIGHWAY

PCMSAirDistToLinks 27 None

PCMSAirDistToRte2 29 PCMSAirDistToRte()

PCMSCalcDistance 29 Combination of PCMSNewTrip(),
PCMSCalcTrip(), and PCMSDeleteTrip()

PCMSCalcDistance2 29 Combination of PCMSNewTrip(),
PCMSetCalcType(), PCMSCalcTrip()

PCMSCalcDistance3 29

Combination of PCMSNewTrip(),
PCMSSetCalcType(), PCMSCalcTrip(),
PCMSGetDuration(), and
PCMSDeleteTrip()

PCMSCalcTrip2 29 PCMSCalcTrip()

MISCELLANEOUS:

PCMSTripCacheSave 26 None

PCMSTripCacheLoad 26 None

PCMSChangeWWDataSet 28 None

PCMSFuelOptimize 27 None

PCMSSetDebug 28 None

PCMSGetDebug 28 None

PCMSIsValid 29 None

 Appendix H: Deprecated Functions & Options 209

API/Option Name Deprecated
in Version Alternate Functionality

PCMSResetTrip 29 PCMSClearStops()

Function CToBas 26 None

Server.jar 30 Alk.jar

 PC*MILER|Connect User’s Guide 210

Appendix I:

The PCMSERVE.INI File

NOTE: As a developer, wherever possible you should use the provided API’s
rather than depending on edits in the .INI file for your default settings. Be aware
that, in some cases, editing the global defaults in the .INI may cause unforeseen
problems.

You can modify the PCMSERVE.INI file to set default trip options so that these
options are active each time PC*MILER|Connect starts up. The INI file is in your
Windows or Windows NT folder, and can be opened using Notepad, Wordpad, or
another text editor.

Note that an option set with an API function takes precedence over both the
INI setting and the setting in the PC*MILER user interface. The order of
precedence is as follows:

1. Options that are set using Connect functions prevail over the default options set
in PC*MILER and the INI file.

2. Options set in PCMSERVE.INI prevail over those set in PC*MILER.

3. An option set as the default in PC*MILER takes effect only in the absence of
settings 1 and 2, and only when a key for that option exists in the
PCMSERVE.INI without an assigned value. For example, the Distance
Precision setting in PC*MILER would only take effect when the line
DistancePrecision= exists in the [OPTIONS] section of the INI.

Note also that the same defaults are used for all clients that connect via
PC*MILER|Connect at the same time. You have to shut down all client applications
to unload Connect before any changes to the INI file will take effect.

NOTE: Beginning in Version 26, customizations in the PCMSERVE.INI file from
the previous version are retained when you install a new version of PC*MILER.

Settings in the INI that can be added or edited are listed below. If you open the INI
file, you won’t see all of these settings in it. If any key doesn’t have a value or is
not found in the INI file, it assumes the default value or the value set in the
PC*MILER user interface. These defaults are used to initialize each new trip. After
creating a trip, you can change the options for that trip through function calls.

I A
pp

en
di

x

 Appendix I: The PCMSERVE.INI File 211

KEY Valid Values Description

[Engine]
ShowEngine= 0

1
Should Connect automatically start
the engine (1) or not (0).
Default = 0

[Logging]

Enable= 0
1

Should log files be generated (1) or
not (0).
Default = 0

File= Path/file name of log file.

Append= 0
1

Append to old file (1) or write over
(0). Default = 0

MaxStrLen= Any integer up
to 254

Assign number of characters to
truncate log messages to (optional)

DisplayTime=

0
1

When DisplayTime = 1, date and
time are shown at the beginning of
each line in the specified log file.

MultiThread=

0
1

When set to = 1, the log will contain
thread IDs to show the API’s
executed on each current running
thread. Default = 0.

[Defaults]
CalcType= Practical

Shortest
National
AvoidToll
Air

Set the default routing type: most
Practical, Shortest by distance,
favor State + National Network
(includes 53 foot routing), avoid
tolls, or Air (straight line).
Default = Practical
Note: Toll-Discouraged and
National routing are based on
Practical miles.

Units= Miles
Kilometers

What unit of measure should
distance be shown in.
Default = Miles

ChangeDest= TRUE
FALSE

When optimizing the route,
should the trip’s destination be
optimized also (T).
Default = False

 PC*MILER|Connect User’s Guide 212

Borders= TRUE

FALSE
Should the engine try to keep
routes within the United States
(F), or can they cross and recross
the borders at will (T).
Default = True

HubMode= TRUE
FALSE

Calculate the routes from the
origin to each stop (T), not
through each stop (F).
Default = False

AlphaOrder= TRUE
FALSE

List the states in the State Report
in alphabetical order (T) or in the
order driven (F).
Default = True

FerryMiles= TRUE
FALSE

Use ferry distances in mileage and
cost calculations (T), or don’t use
(F).
Default = True

LightVehicle= TRUE
FALSE

Should the DLL use Light Vehicle
routing (available if Streets data is
installed with PC*MILER).
Default = False

MAPPING= TRUE
FALSE

(AS/400 parameter)
Default = False

EXPMAP= TRUE
FALSE

(AS/400 parameter)
Default = False

[Options]
CustomRoute= TRUE

FALSE
Should PC*MILER|Connect use
Custom routing.
Default = False

HazRoute=
(only with the PC*MILER|Hazmat
add-on)

None
General*
Explosive
Inhalant
Radioactive
Corrosive
Flammable
HarmfultoWater

Hazardous material routing types
for North America are: none
(hazmat routing disabled),
general, explosive, inhalant,
radioactive, corrosive, or
flammable. For Europe or
Oceania, hazmat route types are:
none, general, explosive,

 Appendix I: The PCMSERVE.INI File 213

flammable, or harmful to water.
Default (all regions) = None
*NOTE: “General” = “Other” in
the PC*MILER UI, they are the
same route type and algorithm.

PartialCityMatch= TRUE
FALSE

Enables the return of a city match
on a partial match of up to 28
characters.
Default = False

HistoricalRoadSpeeds=

TRUE
FALSE

Toggles activation of traffic data.
Equivalent to the “Traffic
Enabled” option in PC*MILER.
Default = False

UseUSPostCodes=

TRUE
FALSE

When set to TRUE, if a 5-digit
postal code might be a U.S. or a
Mexican code, the U.S. code will
be used.
Default = True (see note below)

UseMexPostCodes=

TRUE
FALSE

When set to TRUE, if a 5-digit
postal code might be a U.S. or a
Mexican code, the Mexican code
will be used.
Default = False
NOTE: If UseUSPostCodes and
UseMexPostCodes are both
FALSE, or not in the INI, the
default U.S. code will be used.
Also see IMPORTANT NOTE for
PCMSLookup in section 3.7.

UseStreets=
(only if Streets data is installed with
PC*MILER)

TRUE
FALSE

Should street-level (T) or
highway-only (F) routing be used
when stops are city names or
postal codes.
Default = False

UseNLAbbrevInMX

TRUE
FALSE

When set to TRUE, the “NL”
abbreviation geocodes to Nuevo
Leon in Mexico.

CountryAbbrevType= FIPS
ISO2
ISO3
GENC2

For PC*MILER|Worldwide, this
option sets the country code
format that will be accepted when
using city name/country

 PC*MILER|Connect User’s Guide 214

GENC3 abbreviations as locations in
regions other than North America.
Default = FIPS

DistancePrecision= Tenths
Hundredths
Thousandths

Sets the number of decimal places
that will be returned when
distances are calculated.
Default = Tenths

RouteSyncJSONFormat= TRUE

FALSE

For RouteSync users, sets the
format of RouteSync blobs to
JSON (v3) when True.
Default = False

[ConnectOptions]
Anglicize=

TRUE
FALSE

Turns on the global conversion of
diacriticals (e.g. “Montréal, QC”
into usable/displayable text
strings.
Default = False

AvoidFavorAutoSave= TRUE

FALSE

(PC*MILER|Connect) This option
can be set to TRUE to autosave
avoids/favors on shutdown.
Default = False (Note: when this
line is not present, default = false)

GeofenceAutoSave= TRUE
FALSE

(PC*MILER|Connect) This option
can be set to TRUE to autosave
geofence data on shutdown.
Default = True (Note: when this
line is not present, default = false)

LatLonFormatDecimal=

TRUE
FALSE

Pertains to the function
PCMSAddressToLatLong(),
causing the function to return
lat/longs in decimal degrees (e.g.
40.348848N,74.662703W).

When this line is not included in
the .INI or is included but
=FALSE, the function returns
degrees, minutes, seconds (e.g.
0402056N,0743946W).

 Appendix I: The PCMSERVE.INI File 215

Default = False (Note: when this
line is not present, default = false)

[MappingOptions]
AvoidFavorAutoSave= TRUE

FALSE

(PC*MILER|Mapping) This option
can be set to TRUE to autosave
avoids/favors on shutdown.
Default = False (Note: when this
line is not present, default = false)

GeofenceAutoSave= TRUE
FALSE

(PC*MILER|Mapping) This option
can be set to TRUE to autosave
geofence data on shutdown.
Default = True (Note: when this
line is not present, default = false)

[Defaults]
Region= NA

SA
Africa
Asia
Europe
ME
Oceania

Default region is NA (North
America). Other regions are
available worldwide with
PC*MILER|Worldwide.

ProductName= PC*MILER

ProductVersion= 31.0 Current version of PC*MILER.

DLLPath=

Usually
C:\ALK
Technologies\
PCMILER31\app

Path to the current installation of
PC*MILER.

	Word Bookmarks
	OLE_LINK13
	OLE_LINK14
	OLE_LINK15
	serialnum
	OLE_LINK4
	OLE_LINK5
	OLE_LINK3
	country_code_formats

