

ALL RIGHTS RESERVED

You may print one (1) copy of this document for your personal use. Otherwise, no part of this
document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language, in any form or by any means electronic, mechanical, magnetic, optical, or
otherwise, without prior written permission from ALK Technologies, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and
other countries.

IBM is a registered trademark of International Business Machines Corporation.

PC*MILER, CoPilot, ALK and RouteSync are registered trademarks of ALK Technologies, Inc.

GeoFUEL™ Truck Stop location data © Copyright 2012 Comdata Corporation®, a wholly owned
subsidiary of Ceridian Corporation, Minneapolis, MN. All rights reserved.

Traffic information provided by INRIX © 2014. All rights reserved by INRIX, Inc.

SPLC data used in PC*MILER products is owned, maintained and copyrighted by the National
Motor Freight Traffic Association, Inc.

Canadian Postal Codes data based on Computer File(s) licensed from Statistics Canada.
© Copyright, HER MAJESTY THE QUEEN IN RIGHT OF CANADA, as represented by the Minister
of Industry, Statistics Canada 2003-2014. This does not constitute an endorsement by Statistics
Canada of this product.

Partial Canadian map data provided by GeoBase®.

United Kingdom full postal code data supplied by Ordnance Survey Data © Crown copyright and
database right 2014. OS OpenData™ is covered by either Crown Copyright, Crown Database
copyright, or has been licensed to the Crown.

Certain Points of Interest (POI) data by Infogroup © Copyright 2014. All Rights Reserved.

Geographic feature POI data compiled by the U.S. Geological Survey.

Oil and gas field content provided by GeoTrac Systems Inc.© Copyright 2014. All rights reserved.

Cartographic data provided by multiple sources including lnstituto Nacional de Estadistica y
Geografia, U.S. Geological Survey, Natural Earth and © Department of Natural Resources Canada.
All rights reserved.

Copyright ALK Data © 2014 – All rights Reserved.

Copyright HERE Data © 2014 – All rights Reserved. HERE Data © is subject to the terms set forth
at http://corporate.navteq.com/supplier_terms.html.

ALK Technologies, Inc. reserves the right to make changes or improvements to its programs and
documentation materials at any time and without prior notice.

© Copyright 1994-2014 ALK Technologies, Inc.
457 North Harrison Street, Princeton, NJ 08540

 PC*MILER|Mapping User’s Guide i

PC*MILER® Product Line

 END-USER LICENSE AGREEMENT

1. Grant of License: Subject to the terms, conditions, use limitations and payment of fees
as set forth herein, ALK Technologies, Inc. (“ALK”) grants the end-user (“you”) a
license to install and use the PC*MILER solution(s) (including traffic data
subscriptions) you have purchased (“PC*MILER”) on a single personal computer. The
PC*MILER software, data and documentation are provided for your personal, internal
use only and not for resale. They are protected by copyright held by ALK and its
licensors and are subject to the following terms and conditions which are agreed to by
you, on the one hand, and ALK and its licensors (including their licensors and
suppliers) on the other hand.

2. Title: You acknowledge that the PC*MILER computer programs, data, concepts,

graphics, documentation, manuals and other material by, developed by or licensed to
ALK, including but not limited to program output (together, “program materials”), are
the exclusive property of ALK or its licensors. You do not secure title to any
PC*MILER program materials by virtue of this license.

3. Copies: You may make one (1) copy of the PC*MILER program materials, provided
you retain such copy in your possession and use it solely for backup purposes. You
agree to reproduce the copyright and other proprietary rights notices of ALK and its
licensors on such a copy. Otherwise, you agree not to copy, reverse engineer,
interrogate or decode any PC*MILER program materials or attempt to defeat protection
provided by ALK for preventing unauthorized copying or use of PC*MILER or to
derive any source code or algorithms therefrom. You acknowledge that unauthorized
use or reproduction of copies of any program materials or unauthorized transfer of any
copy of the program materials is a serious crime and is grounds for suit for damages,
injunctive relief and attorneys' fees.

4. Limitations on Transfer: This license is granted to you by ALK. You may not directly
or indirectly lease, sublicense, sell or otherwise transfer PC*MILER or any PC*MILER
program materials to third parties, or offer information services to third parties utilizing
the PC*MILER program materials without ALK's prior written consent. To comply
with this limitation, you must uninstall PC*MILER from your computer prior to selling
or transferring that computer to a third party.

5. Limitations on Network Access: You may not allow end-users or software applications
on other computers or devices to directly or indirectly access this copy of PC*MILER
via any type of computer or communications network (including but not limited to local
area networks, wide area networks, intranets, extranets, the internet, virtual private
networks, Wi-Fi, Bluetooth, and cellular and satellite communications systems), using
middleware (including but not limited to Citrix MetaFrame and Microsoft Terminal
Server) or otherwise (including but not limited to access through PC*MILER
connectivity products), or install or use PC*MILER on a network file server, without

 PC*MILER|Mapping User’s Guide ii

first notifying ALK, executing a written supplemental license agreement, and paying
the license fee that corresponds to the number and types of uses to which access is to be
allowed.

6. Limitations on Data Extraction: You may extract data (including but not limited to

program output such as distances, maps, and driving directions) from PC*MILER and
use it in other applications on the same computer on which PC*MILER is legally
licensed and installed. You may not transfer data extracted from PC*MILER onto any
other computer or device unless you have licensed PC*MILER for that computer or
device.

7. Limitations on Mobile Communications: Without limiting the generality of the

foregoing, you may not transmit PC*MILER street-level driving directions through
mobile communications systems such as Qualcomm, satellite, or cellular services or to
mobile devices such as computers, handhelds, pagers, or telephones without first
executing a written supplemental license agreement with ALK and paying the license
fee that corresponds to the number and types of devices and systems to and through
which transmission is to be permitted.

8. Limitations on Disclosure: You may disclose PC*MILER distances to trading partners
for specific origin-destination moves for which you provide transportation services and
use PC*MILER distances as a basis for payment. You may not make any other
disclosure of PC*MILER programs and materials, including but not limited to program
output, to anyone outside the legal entity that paid for and holds this license, without
prior written permission of ALK. You acknowledge that the PC*MILER programs and
materials by, developed by or licensed to ALK are very valuable to ALK and its
licensors, and their use or disclosure to third parties except as permitted by this license
or by a written supplemental license agreement with ALK is strictly prohibited.

9. Security: You agree to take reasonable and prudent steps to safeguard the security of

the PC*MILER program materials and to notify ALK immediately if you become
aware of the theft or unauthorized possession, use, transfer or sale of the PC*MILER
program materials licensed to you by ALK.

10. Acceptance: You are deemed to have accepted the PC*MILER program materials

upon receipt.

11. Warranties: ALK represents and warrants that:

A. For ninety (90) days from date of purchase, PC*MILER, when delivered and

properly installed, will function substantially according to its specifications on a
computer purchased independently by you.

B. For ninety (90) days from date of purchase, the software media on which ALK

provides PC*MILER to you will function substantially free of errors and defects.
ALK will replace defective media during the warranty period at no charge to you
unless the defect is the result of accident, abuse, or misapplication of the product.

 PC*MILER Product End-User License Agreement iii

C. THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER
WARRANTIES EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITING
THE GENERALITY OF THE FOREGOING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE
PC*MILER PROGRAM, DATAAND DOCUMENTATION IS SOLD "AS IS". IN
NO EVENT SHALL ALK OR ITS LICENSORS BE LIABLE FOR ANY
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES SUCH AS, BUT
NOT LIMITED TO, LOSS IN CONNECTION WITH OR ARISING OUT OF
THE EXISTENCE OF THE FURNISHING, FUNCTIONING OR USE OF ANY
ITEM OF SOFTWARE, DATA OR SERVICES PROVIDED FOR IN THIS
AGREEMENT. IN THE EVENT THAT A COURT OF PROPER
JURISDICTION DETERMINES THAT THE DAMAGE LIMITATIONS SET
FORTH ABOVE ARE ILLEGAL OR UNENFORCEABLE THEN, IN NO
EVENT SHALL DAMAGES EXCEED THE CONTRACT PRICE. THIS
WARRANTY SHALL NOT ACCRUE TO THE BENEFIT OF THIRD PARTIES
OR ASSIGNEES.

12. Disclaimer: The data may contain inaccurate, incomplete or untimely information due
to the passage of time, changing circumstances, sources used and the nature of
collecting comprehensive geographic data, any of which may lead to incorrect results.
PC*MILER’s suggested routings and traffic data are provided without a warranty of
any kind. The user assumes full responsibility for any delay, expense, loss or damage
that may occur as a result of their use. The user shall have no recourse against Canada,
whether by way of any suit or action, for any loss, liability, damage or cost that may
occur at any time, by reason of possession or use of Natural Resources Canada data.

13. Termination: This Agreement will terminate immediately upon any of the following

events:

A. If you seek an order for relief under the bankruptcy laws of the United States or
similar laws of any other jurisdiction, or a composition with or assignment for the
benefit of creditors, or dissolution or liquidation, or if proceedings under any
bankruptcy or insolvency law are commenced against you and are not discharged
within thirty (30) calendar days.

B. If you materially breach any terms, conditions, use limitations, payment

obligations, or any other terms of this Agreement.

C. Upon expiration of any written supplemental license agreement between you and

ALK of which this license is a part.

14. Obligations on Termination: Termination or expiration of this Agreement shall not be
construed to release you from any obligations that existed prior to the date of such
termination or expiration.

15. Hold Harmless and Indemnity: To the maximum extent permitted by applicable law,

you agreeto hold harmless and indemnify ALK and its subsidiaries, affiliates, officers,
agents, licensors, co-branders or other partners, and employees from and against any

 PC*MILER|Mapping User’s Guide iv

third party claim (other than a third party claim for Intellectual Property Rights) arising
from or in any way related to your use of PC*MILER, including any liability or
expense arising from all claims, losses, damages (actual and/or consequential), suits,
judgments, litigation costs and attorneys' fees, of every kind and nature. ALK shall use
good faith efforts to provide you with written notice of such claim, suit or action.

16. Disclosure for products containing Historical or Real-time Traffic data: traffic data,

including historical traffic data, is licensed as a subscription service which must be
renewed annually for continued use. ALK and its licensor(s) will use commercially
reasonable efforts to make traffic data available at least 99.5% of the time each calendar
month, excluding minor performance or technical issues as well as downtime
attributable to necessary maintenance, and Force Majeure.

17. Limitations on Export: You hereby expressly agree not to export PC*MILER, in whole

or in part, or any data derived therefrom, in violation of any export laws or regulations
of the United States.

18. Miscellaneous: This Agreement shall be construed and applied in accordance with the

laws of the State of New Jersey. The Courts of the State of New Jersey shall be the
exclusive forum for all actions or interpretation pertaining to this Agreement. Any
amendments or addenda to this Agreement shall be in writing executed by all parties
hereto. This is the entire Agreement between the parties and supersedes any prior or
contemporaneous agreements or understandings. Should any provision of this
Agreement be found to be illegal or unenforceable, then only so much of this
Agreement as shall be illegal or unenforceable shall be stricken and the balance of this
Agreement shall remain in full force and effect.

 PC*MILER|Mapping User’s Guide v

Table of Contents

PC*MILER®Product Line END-USER LICENSE AGREEMENT i

Chapter 1: GETTING STARTED .. 1
1.1 Requirements ..2
1.2 Installing PC*MILER|Mapping ..2
1.3 Technical Support ...3
1.4 Printing the User’s Guide ..3
1.5 Distributing Applications That Use PC*MILERMapping ...3
1.6 Licensing ...4
1.7 What’s New in PC*MILER|Mapping? ...4

Chapter 2: MAP LAYERS .. 5
2.1 The Concept of Layers ..5
2.2 Layer Control ..5
2.3 Overlapping Pins ...6

Chapter 3: PROGRAMMING WITH THE DLL INTERFACE .. 8
3.1 Getting Started ..8
3.2 Built-in Functionality ..9
3.3 Using PC*MILER|Mapping DLL Functions ..11

3.3.1 Opening and Closing Map Windows ...12
3.4 Map Manipulation Functions ..14

3.4.1 Map Style and Dimensions ..14
3.4.2 Map Drawers ..17
3.4.3 Scroll, Print, Copy and Redraw ...18
3.4.4 Toggle Display Features ..19
3.4.5 Toggle Legends ..20
3.4.6 Adding or Removing Detail ...22
3.4.7 Frame and Zoom Functions ...22
3.4.8 Layer Control Functions ..24
3.4.9 Callback Functions...25
3.4.10 Callback Ability ...27
3.4.11 Displaying Pins, Trips, and Lines in the Map Window ...34
3.4.12 Saving .GIF Images ...36

3.5 Plot Functions ...36
3.5.1 Pin and Label Functions...37
3.5.2 Assigning Alias Names To Colors ...40
3.5.3 Assigning Alias Names To Bitmaps ..40
3.5.4 Setting a Custom Font For Labels ...40
3.5.5 Pin Label Positioning ...41
3.5.6 Trip and Line Functions ...41
3.5.7 Pinmap Functions...43
3.5.8 Map Region Functions ...44

 PC*MILER|Mapping User’s Guide vi

3.6 Geofence and Highlight Functions ...45
3.6.1 Geofence Functions ...45
3.6.2 State Highlight Functions ..50
3.6.3 Street Highlight Functions ...51

3.7 Management Functions ...52
3.8 Multiple Map Windows (‘Ex’ Functions) ...53

Chapter 4: USING PC*MILER|MAPPING WITH EXCEL ... 55
4.1 Enabling the Add-In Manually ...55
4.2 Disabling the Add-In Manually ..57
4.3 Enable/Disable Autoloading of PC*MILER|Mapping ...57
4.4 Functions Available Through the Excel Interface ..57

4.4.1 Plotting an Icon ..58
4.4.2 PC*MILER|Mapping Icons ...59
4.4.3 Plotting a Route Between Two Points ...61
4.4.4 Plotting a Line Between Two Points ...63
4.4.5 Deleting Icons ..65
4.4.6 Deleting Lines ..66
4.4.7 Deleting Trips ..67
4.4.8 PCMG Functions Available in Excel ...68

Chapter 5: USING THE PC*MILER|MAPPING COM SERVER 69
5.1 Summary of the Objects ..69
5.2 PCMMapMgr PROPERTIES AND METHODS ...73
5.3 PCMMap PROPERTIES AND METHODS ..74
5.4 PCMMapSettings PROPERTIES ...93

Chapter 6: TROUBLE-SHOOTING (HELPFUL HINTS) .. 95

APPENDIX A: LOCATION OF HEADER FILES & SAMPLE CODE 97

APPENDIX B: THE PCMSERVE.INI FILE ... 98

APPENDIX C: ERROR CODES .. 103

APPENDIX D: ALPHABETICAL FUNCTION INDEX .. 104

 PC*MILER|Mapping User’s Guide 1

Getting Started

PC*MILER|Mapping is an extended version of the PC*MILER map in DLL
form. It has all the features of the PC*MILER map plus the ability to draw
routes, icons (“pins”), and lines at precise geographic locations.
PC*MILER|Mapping is intended to be used by software developers who want to
integrate maps into their applications. It is ideal for vehicle tracking, route
visualization, and viewing geographic data.

Portion of a Map Created Using PC*MILER|Mapping

ALK gives programmers a choice between several interfaces: dynamic DLL
linking, use of Mapping COM objects, and Java.

All interfaces include the capability to control the map: zoom to a particular
region, location, group of locations, or trip; scroll the map in a desired direction;
zoom in and out; and control map detail level.

Plot functions make it possible to display custom locations on the map (as circles,
squares or bitmaps), and trips. A set of functions is provided to interact with the
map, primarily for mouse events.

For Windows applications, the client application will not be able to attach to the
window handle and write on top of the map window owned by the mapping dll.

1 C
h

ap
te

r

 PC*MILER|Mapping User’s Guide 2

We suggest that you use our extensive set of API functions to plot on top of
the map to ensure high quality graphics.

For web applications, PC*MILER|Mapping includes the capability to generate
GIF images in the desired dimensions. Since the GIF image is sent to the client
application as a buffer or file, the client application may overlay their own
graphics on top of our map. As stated above for Windows applications, we
suggest that you use our extensive set of API functions to plot on top of the map
to ensure high quality graphics.

PC*MILER|Mapping is sold separately from PC*MILER. It supports mapping
functions and interfaces to other programs. Support is provided for using
PC*MILER|Mapping with ‘C’, ‘C++’, Visual Basic, Excel and Delphi.

PC*MILER|Mapping allows users to draw routes and plot geographic information
on the PC*MILER map from other Windows applications. It is intended to be
used in conjunction with other Windows programs such as Microsoft Excel
and Microsoft Access, and by developers with their own applications.

1.1 Requirements

PC*MILER|Mapping requires a base installation of PC*MILER or
PC*MILER|Streets. For a complete list of PC*MILER platforms and
requirements, see the PC*MILER User’s Guide. (To access the User’s Guide,
see Printing the User’s Guide below.)

Additionally, the Mapping application requires:

 3 MB extra free space on your hard disk

 A development system. Interface definitions for Borland C++ and Visual
Basic are currently supported, but other development systems should have no
trouble calling PC*MILER|Mapping.

1.2 Installing PC*MILER|Mapping

PC*MILER|Mapping is a PC*MILER add-on product that can be installed when
you install PC*MILER or at a later time. To install Mapping along with
PC*MILER, you simply make sure that “PC*MILER|Mapping” is checked on
the list of PC*MILER components when you are prompted during the installation
process.

If you are adding the PC*MILER|Mapping module at a later time, see the PDF
User’s Guide that was included with the PC*MILER installation (refer to Adding
New PC*MILER Products in Chapter 2). To access the User’s Guide, see
Printing the User’s Guide below.

 Chapter 1: Getting Started 3

1.3 Technical Support

ALK Technologies offers one year of free unlimited technical support to all
registered users of PC*MILER. If you have any questions about
PC*MILER|Mapping or problems with the software that cannot be resolved using
this User’s Guide, contact our staff:

Phone: 1.800.377.6453, ext. 2 or 1.609.683.0220, ext 2
Fax: 609.252.8196
Email:pcmsupport@alk.com
Web Site: www.pcmiler.com
Hours: 9:00am – 5:00pm EST, Mon-Fri

When calling, ask for “PC*MILER Technical Support”. Please be sure to have
your PC*MILER|Mapping Product Key Code, version number, Windows version
number, and hardware configuration information (manufacturer, speed, and
monitor type) available before your call. Please include this information in your
message if you are contacting us by email.

1.4 Printing the User’s Guide

To view or print additional copies or portions of the User’s Guide for any
PC*MILER product, click the Windows Start button>All Programs (or the
equivalent in your version of Windows) > PCMILER 28>User Guidesand select
one of the .pdf files from the sub-menu.

You must have Adobe Acrobat Reader on your computer to open the User’s
Guide. If you do not have the program installed already, a free copy can be
downloaded from www.adobe.com.

1.5 Distributing Applications That Use PC*MILERMapping

Purchasing PC*MILER|Mapping does not entitle you to redistribute any portions
of this product. You may NOT redistribute ALK’s highway database, source
code, interface definitions, or the PC*MILER for Applications DLL.

Your clients can purchase additional versions of the PC*MILER engine and
database directly from ALK. ALK Technologies’ sales representatives can be
reached at 1-800-377-MILE.

 PC*MILER|Mapping User’s Guide 4

1.6 Licensing

Unless you buy additional licenses, only one copy of PC*MILER| Mapping at a
time can attach to the highway database. You can connect more client
applications by purchasing additional database licenses from ALK (multi-user
licenses). If you plan to connect many users to a network version of the
PC*MILER database, ALK has attractive pricing for LAN versions.

1.7 What’s New in PC*MILER|Mapping?

New in Version 28

 NEW!Ten APIs for managing map styles, dimensions and features. See sections
3.4.1 and 3.4.2.

 NEW! Three APIs for adding and deleting street highlights. See section 3.6.3.

 NEW!Two new callback functions. See section 3.4.9.

 Deprecated in Version 28: PCMGSetDebug, PCMGGetDebug,
PCMGToggleShapePts, PCMGSetShapePts, PCMGGetShapePts,
PCMGCreateLegendGif, PCMGSetCustomMode

New in Version 27

No new features were added to PC*MILER|Mapping Version 27.

 PC*MILER|Mapping User’s Guide 5

Map Layers

2.1 The Concept of Layers

PC*MILER|Mapping uses the concept of layers to allow users to control certain
types of map objects. All map objects are divided into layers such as Cities,
Roads, Parks, Trips, etc. The user can control the visibility of each layer and the
order in which they are displayed. For example, Road Shields normally should be
drawn on the top of Roads.

2.2 Layer Control

You can control what features are displayed and in what order features are drawn
on the map using the Map Features dialog box, a part of the regular Win32 DLL
interface (this feature is not included in COM interface or Java). To open this
dialog, first click on the map with the right mouse button, then choose
Features…from the menu that pops up.

2 C
h

ap
te

r

 PC*MILER|Mapping User’s Guide 6

Using the Map Features dialog box, you can hide or display the following map
features: stop names; city names; cities; road labels; roads; U.S., Canadian and
Mexican political boundaries; coastlines; oceans.

In the feature list of this dialog box, a checkmark means "display". Click on a
feature on the list to highlight it, then click on the Hide button to remove the
checkmark. Click again on the button (it will now say Show) to make the
checkmark reappear. (You may also double-click on lines in the feature list to
toggle Show/Hide.) Use the Show All and Hide All buttons to select or remove
all the checkmarks. Click on the Defaults button to return to the default setting
(all features are displayed).

The order (from bottom to top) in which the features appear in the dialog box
determines the order in which they are drawn: items on the bottom of the list are
drawn under the ones at the top. Use the Raise, Lower, To Top, and To Bottom
buttons to manipulate the list. So, for example, if you highlight "City Names" and
then click on the To Top button, "City Names" will move to the top of the list.
When the map is redrawn the city names will be drawn last, on top of all other
features. Clicking on OK closes the Map Features box and redraws the map.

2.3 Overlapping Pins

When you create a layer with multiple pins in the same location,
PC*MILER|Mapping can create a special icon at that location that enables you to
view a list of the cluster of pins and see detailed information about them. This
feature is often used to reduce the number of pins on the map, and to simplify
access to individual pins in close proximity to each other.

To see the list of pins represented by this icon, first click on the map with the right
mouse button, then choose Pick/Label>Pick Pins. The cursor shape will change
to a hand with a pointing finger. Now click on the target icon to bring up the
Selected Pins dialog box. This dialog lists all the pins at the location you clicked.
The number of pins listed is in parentheses in the title bar.

 Chapter 2: Map Layers 7

To see more detailed information about a pin as shown below, highlight it on the
list and click OK, or double-click on the item you wish to select.

 PC*MILER|Mapping User’s Guide 8

Programming With the DLL Interface

Programming with the regular DLL interface involves linking your Windows
application to the PC*MILER|Mapping DLLs (statically or dynamically), then
creating a map window (it can be a child of an existing window, or a completely
new window), and then working with this window through DLL calls. All
functions of this interface start with the prefix “PCMG”. PC*MILER|Mapping
also includes a set functions to create and work with multiple map windows(see
section 3.8).

3.1 Getting Started

After completing the Full Installation you should have a Windows program group
containing an icon for a test program to verify your installation. Starting this
program will bring up the map window displaying the North American highway
system and allow you to use the map’s built-in functionality.

The PC*MILER|Mapping installation includes the following two main DLLs:

MapWindow DLL pcmgw32.dll
 (PC*MILER and PC*MILER|Worldwide)

 pmwsmap.dll (PC*MILER|Streets)
Provides functions to create and manipulate a map
window that displays the PC*MILER network
containing U.S., Canadian, and Mexican political
boundaries, state boundaries, city names, highways,
roads.

Mapping DLL pcmgmp32.dll
 (PC*MILER and PCMILER|Worldwide)

 pmwscomm.dll (PC*MILER|Streets)
This DLL provides functions to plot geographic
information such as icons, routes, and lines in the
map window.

3 C
h

ap
te

r

 Chapter 3: Programming With the DLL Interface 9

3.2 Built-in Functionality

To allow you to get started more quickly, PC*MILER|Mapping has built-in
zooming features and a menu invoked off the right mouse button which provides
much of its functionality.

To zoom to an area, drag a rectangle around it (hold down the left mouse and
drag) or double-click on a point within the area to center the map around it. The
following features are provided in the right-mouse menu:

Zoom In Zoom in by a factor of two; can be repeated for closer
views; increases detail.

Zoom out Zoom out by a factor of two; can be repeated; decreases

detail.

Pan> Shift the map view in any of eight directions: North,

South, East, orWest.

Frame > Frame one of the geographic areas listed in the sub-

menu.Auto Frame Route automatically frames all routes
when they are generated. All Routes frames every
generated route drawn on the map. To frame just one
route, select it from the bottom of the menu.

 PC*MILER|Mapping User’s Guide 10

Drag Map In Drag Map mode, the user can drag the map in any

direction to change the view. Click the left mouse button,
hold, and drag.

Drag Routing Enables the user to drag a route onto a different road,

creating a new via point.

Features… Invoke the Features dialog box to control which features

are drawn on the map and the order in which they are
drawn.

Redraw Redraw the current display in the map window.

Pick/Label > Choose one from the sub-menu:

 Label Cities: Enable user to label and deselect locations
and road intersections with the mouse.

 Label Roads: Enable user to label and deselect roads with
the mouse.

Pick Pins: Enable user to click on the pins and display a
window listing information about the icon.

Clear: Delete all labels that have been added manually.

Detail > Add to, reduce or return to the default number of roads,
road names and place names drawn on the map. (Choose
More, Less, or Default from the submenu).

Legends > Show/Hide the Scale of Miles, Road Legend, Route

Legend, Restriction Legend(with PC*MILER| HazMat
installed), and/or Traffic Legend (with Traffic features
installed).

Tooltips > Select Route Distance to have a tooltip appear when the

cursor is placed over a route on the map. The tooltip will
display the distance between the selected point and the
route’s origin, and between the selected point and the
route’s final destination.

Copy Copythe map to the clipboard for retrieval in other

Windows programs.

Print… Print the map that is currently displayed in the map
window.

 Chapter 3: Programming With the DLL Interface 11

3.3 Using PC*MILER|Mapping DLL Functions

This section explains how to create applications that use the PC*MILER|Mapping
DLL’s. While this section is geared to ‘C’ programmers, it should apply to any
language that can call DLL’s using the Pascal calling convention.

Function references for all the subroutines described in Chapter 3 can also be
found in the header files in the PC*MILER|Mapping installation – see Appendix
A. Please have a look at the sample code included with PC*MILER|Mapping for a
detailed example of how to use the DLL. The location of these files is usually
C:\ALK Technologies\PCMILER28\Mapping.

Building an application with the MapWindow DLL is similar to using other
DLL’s from C programs. You’ll need to specify the directories that contain
header and library files for the MapWindow DLLin your project. If you installed
PC*MILER|Mapping in the default location C:\ALK Technologies\PCMILER28,
the headers and the libraries will be in C:\ALK Technologies\
PCMILER28\Mapping. Sample code will also be in the Mapping directory.

All the function declarations of pcmgw32.dll (or pmwsmap.dll for
PC*MILER|Streets)are included in pcmgwin.h. All the function declarations of
pcmgmp32.dll(or pmwscomm.dll for PC*MILER|Streets)are included in
pcmgmap.h.

Call LoadLibrary at runtime to load the DLL and then call GetProcAddress
to retrieve the entry points for the functions exported from the DLL. Examples of
this method using Visual C++ are included in the subdirectory
MAPPING\MSVCPP of your PC*MILER installation.

You can also either link the application with the supplied import libraries
(pcmgw32.lib, pcmgmp32.lib), or include the IMPORTS section from the
included def files (pcmgw32.def, pcmgmp32.def) in your project’s module
definition file.

NOTE:Beginning with Version 14, all PC*MILER DLL’s are compiled with
Visual C++. So the included lib files may not be compatible with compilers other
than Visual C++. We strongly recommend that the LoadLibrary method should
be used.

Differences in PC*MILER and PC*MILER|Streets DLL filenames and directories
are summarized below:

 PC*MILER|Mapping User’s Guide 12

PC*MILER
and PC*MILER|Worldwide

PC*MILER|Streets

C:\...PCMILER28\MAPPING C:\...PCMILER28\MAPPING

pcmgw32.dll pmwsmap.dll

pcmgmp32.dll pmwscomm.dll

pcmgw32.lib pmwsmap.lib

pcmsmp32.lib pmwscomm.dll

pcmgw32.def pmwsmap.def

pcmsmp32.def pmwscomm.def

PCMSERVE.INI PCMSERVE.INI

3.3.1 Opening and Closing Map Windows

There are potentially four steps, using the functions described in this section, for
opening and closing map windows:

1. Initialize the data for a new map window using PCMGInitMap().
2. Create the new map window using either PCMGCreateMapWindow() or

PCMGCreateMapChild().
3. Close the new map window using PCMGCloseMap(), or completely close

the application using PCMGCleanupMap().
4. If PCMGCloseMap() was used to close a particular map window, you may

reinitialize and reopen a new map window (steps 1 and 2 above), or reopen an
existing map window using PCMGResizeMapChild(). If you called
PCMGCleanupMap() and then wish to use PC*MILER|Mapping again, you
must call PCMGInitMap() as in step 1 above.

BOOL _PCMGWFN PCMGInitMap(const char FAR *appName, const
char FAR *iniFile);

The function PCMGInitMapwill initialize data for a new map window. Your
application must call this function before calling any other MapWindow DLL
functions.

The first argument is the name of the calling application.

The second argument is the name of the INI file. The DLL uses this to locate the
PC*MILER database. Both arguments may be Null. The default ini file name is
pcmserve.ini. The return value is TRUE if the initialization is successful,
otherwise the return value is FALSE.

HWND _PCMGWFN PCMGCreateMapWindow(HWND parentHWnd, const
char FAR title, int width, int height);

 Chapter 3: Programming With the DLL Interface 13

PCMGCreateMapWindow()creates a new map window. It automatically
displays the PC*MILER network containing U.S, Canadian and Mexican political
boundaries, state boundaries, city names, highways and roads.

The first argument is the handle to the parent window. If the first argument is
NULL, PC*MILER|Mapping creates the map window as a child of the desktop
window – PC*MILER|Mapping creates a standalone overlapped map window as
a child to this parent window and sets the title, width and the height for the map
window. This map window always stays on top of the parent window and it has a
title and border.

This function returns the valid handle to the map window if it creates the map
window successfully. It returns NULL on error.

This is how your application should call these functions:

HWND mapWin;
if (PCMGInitMap("Test App", "pcmserve.ini"))
{
mapWin = PCMGCreateMapWindow(parentWindow,
"Test Map Window", 400, 300);
}

HWND _PCMGWFN PCMGCreateMapChild(HWND parentWin);

PCMGCreateMapChild() creates a new map window as a child of the parent
window. In this case, the map window is not a standalone window. Instead it gets
created in the client rectangle of the parent window. The new map window does
not have a title or border.

The first argument, which is the handle to the parent window, must not be NULL.

This function returns the valid handle to the map window, if it creates the map
window successfully. It returns NULL in case of error or if the parent window
handle is NULL.

A Delphi canvas, Visual Basic Form or a Borland OWL TFrameWindow could
all be parent windows.

In order to resize the map canvas, you should forward resize messages from the
parent to the map window child using PCMGResizeMapChild.

BOOL _PCMGWFN PCMGResizeMapChild(short redraw);

This function returns FALSE if the parent window does not exist. Otherwise it
resizes a map canvas to the parent’s size. Calling this function will make the map
child resize itself to fit exactly inside the parent window.

 PC*MILER|Mapping User’s Guide 14

Use this function only if you have created the map window with
PCMGCreateMapChild.

PCMGCloseMap (long mapid);

PCMGCloseMap() is used to close a particular map window if open. If closing
the application completely, use the function PCMGCleanupMap()(see below).

BOOL _PCMGWFN PCMGCleanupMap();

PCMGCleanupMap()frees all map data and closes the PC*MILER|Mapping
application. This function should only be used to completely close the
application. To close a particular window, use PCMGCloseMap(). If you
want to use PC*MILER|Mapping again after calling PCMGCleanupMap(), you
first need to call PCMGInitMap() as in step 1 at the beginning of this section.

3.4 Map Manipulation Functions

NOTE:The PushMapView, PopMapView, GetMapView, and SetMapView
functions have been discontinued.

The functions in this section allow you to manipulate the map window. All
functions return a negative value in case of error. See Appendix Cfor a list of
error codes.

3.4.1 Map Style and Dimensions

The functions below are for managing map styles and dimensions.

LRESULT _PCMGWFN PCMGGetMapStyleList(char* pList, long
lListSize);

The above function returns a list of valid style names the user can select from.
The list of names will be delimited by the "|" character. The argument pList must
be a pre-allocated memory buffer that gets populated with the list. long lListSize
should indicate the available size of the buffer.

LRESULT _PCMGWFN PCMGGetActiveMapStyle(char* pSyleName,
longbufSize);

Gets the name of the currently active map style.

Parameters:
pStyleName Empty buffer where the active style name is placed
bufSize Size of the empty buffer

 Chapter 3: Programming With the DLL Interface 15

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

LRESULT _PCMGWFN PCMGSetMapStyle(const char* pStyleName);

Using the above function, the user can specify what style to use for the map. The
name given will be checked to ensure it is a valid style name. If it is, the map’s
style will be updated appropriately. If not, the map will remain unchanged and a -
1 value will be returned. See the PC*MILER User’s Guide or Help for more on
available map styles.

LRESULT _PCMGWFN PCMGGetMapWindowDims(long *llLat, long
*llLon, long *urLat, long *urLon);

The above function returns the lower left and upper right corners of the map
projection rectangle in lat/long coordinates as long values. The user must supply
four (4) valid long pointers that will be populated with the relevant information.
After the data is returned, each value can be divided by 1000000.0 to get the
decimal version of the lat/long values if desired.

LRESULT _PCMGWFN PCMGSetProjectionRect(float latitude1,
float latitude2, float longitude2);

Allows the user to specify a desired projection rectangle for the PC*MILER map.
The rectangle is defined by the lower left corner and the upper right corner of the
desired viewing area using latitude/longitude coordinates in decimal format.
PC*MILER will do its best to adjust the maps projection rectangle to match the
user specified one. We cannot guarantee that it will match exactly though.
Calling this function will generate a map resize event.

Parameters:
latitude1 Lower left hand corner latitude coordinate
longitude1 Lower left hand corner longitude coordinate
latitude2 Upper right hand corner latitude coordinate
longitude2 Upper right hand corner longitude coordinate

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

LRESULT _PCMGWFN PCMGGetProjectionRect(float* latitude1,
float* latitude2, float* longitude2);

Returns the current projection rectangle of the PC*MILER map. The coordinates
will be the lower left and upper right corners of the rectangle. They will be given
as latitude/longitude coordinates in decimal format.

 PC*MILER|Mapping User’s Guide 16

Parameters:
latitude1 Lower left hand corner latitude coordinate
longitude1 Lower left hand corner longitude coordinate
latitude2 Upper right hand corner latitude coordinate
longitude2 Upper right hand corner longitude coordinate

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

LRESULT _PCMGWFN PCMGSetProjectionRadius(float latitude,
float latitude, long radius);

Allows the user to specify the projection rectangle of the map based on a center
point and desired viewing radius. The center point is specified as a
latitutde/longitude coordinate in decimal format and the radius is specified in
whole miles. Calling this function will generate a map resize event.

Parameters:
latitude Latitude of the desired center point
longitude Longitude of the desired center point
radius Desired radius (in miles) to encapsulate in the projection rectangle

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

LRESULT _PCMGWFN PCMGSetProjectionCenter(float latitude,
float longitude);

Allows the user to re-center the projection rectangle of the map to the specified
coordinate. The dimensions and zoom level of the map will remain the same, just
readjusted to the new center. The center coordinate is specified as a
latitude/longitude coordinate in decimal format. Calling this function will
generate a map resize event.

Parameters:
latitude Latitude of the desired center point
longitude Longitude of the desired center point

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

LRESULT _PCMGWFN PCMGPixelToLatLong(long x, long y, float
*latitude, float *longitude);

 Chapter 3: Programming With the DLL Interface 17

Will convert a window (x,y) coordinate into a latitude/longitude coordinate within
the map’s current projection rectangle. The lat/long coordinate will be given in
decimal format.

Parameters:
x x-coordinate to be converted
y y-coordinate to be converted
latitude Where the converted latitude coordinate is stored
longitude Where the converted longitude coordinate is stored

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

LRESULT _PCMGWFN PCMGLatLongToPixel(float latitude, float
longitude, long *x, long *y);

Will convert a latitude/longitude coordinate into a window (x,y) coordinate. The
latitude/longitude coordinate is not required to be within the map’s current
projection rectangle for this to work. This function can return coordinates outside
the bounds of the actual map window.

Parameters:
latitude The latitude coordinate, in decimal format, to convert
longitude The longitude coordinate, in decimal format, to convert
x Where the converted x coordinate is stored
y Where the converted y coordinate is stored

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

3.4.2 Map Drawers

LRESULT _PCMGWFN PCMGGetDrawerCount();

This function returns the number of drawers or features offered by the
PC*MILER map. Examples of a drawer are Roads, Cities, Hazmat, Time Zones,
etc.

Return Values:
<0 Internal error, operation failed
>=0 The number of drawers currently loaded by the PC*MILER map

LRESULT _PCMGWFN PCMGGetDrawerInfo(long index, char*
displayName, long bufSize, bool* visible);

 PC*MILER|Mapping User’s Guide 18

This function retrieves basic information about a specific PC*MILER drawer
based on an index value. It returns the drawer’s display name as well as its
current visibility state on the PC*MILER map.

Parameters:
index Index of the drawer for which to get information
displayName Buffer in which to store the drawer’s display name
displaySize Size of the display name buffer
visible Boolean in which to store the drawer’s visibility state

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

LRESULT _PCMGWFN PCMGSetDrawerVisible(const char*
displayName, bool visible);

Allows the user to set whether a specific drawer is visible on the map or not. The
drawer’s display name is used as the unique identifier for the specific drawer you
want to set visibility for.

Parameters:
displayName Display name of the drawer
visible Visibility state to set the drawer to

Return Value:
<0 Internal error, operation failed
>=0 Operation successful

3.4.3 Scroll, Print, Copy and Redraw

LRESULT _PCMGWFN PCMGScrollMapView(int direction);

This function allows you to scroll the map window one ‘page’ in a given compass
direction.

The argument ‘direction’ must be one of the values from the list below:

 DIR_WEST DIR_NORTHEAST
 DIR_EAST DIR_NORTHWEST
 DIR_NORTH DIR_SOUTHEAST
 DIR_SOUTH DIR_SOUTHWEST

LRESULT _PCMGWFN PCMGPrintMap(BOOL showDlg, const char FAR
*title);

Print the map. Pass FALSE for showDlg to bypass PRINT dialog. The second
argument, title, is the name that appears on top of the printed map.

 Chapter 3: Programming With the DLL Interface 19

LRESULT _PCMGWFN PCMGPrintMapOnDC(HDC hDC, const char FAR
*title);

Print the map directly on a printer DC. Client app needs to prepare DC. The
second argument, title, is the name that appears on top of the printed map.

LRESULT _PCMGWFN PCMGCopyMap();

Copy the map to the clipboard. Allows pasting into other Windows applications.

LRESULT _PCMGWFN PCMGRedraw();

Force a redraw of the entire map.

3.4.4 Toggle Display Features

LRESULT _PCMGWFN PCMGSetCityLabeling(BOOL onOff);

Turns city labeling on or off. When on, clicking a road intersection with the left
mouse will label it with a city or intersection name. Clicking again will remove
the label.

LRESULT _PCMGWFN PCMGGetCityLabeling();

Gets the current status of “City Labeling Mode”, whether on or off.

LRESULT _PCMGWFN PCMGToggleCityPicking();

Turns “City Labeling Mode” on and off. When on, clicking a road intersection
with the left mouse will label it with a city or intersection name. Clicking again
will remove the label.

LRESULT _PCMGWFN PCMGSetRoadLabeling(BOOL onOff);

(Deprecated in Version 28) Turns road labeling on or off. When on, clicking a
road will place a shield on the road. Clicking again will remove the shield.

LRESULT _PCMGWFN PCMGGetRoadLabeling();

(Deprecated in Version 28) Gets the current status of “Road Labeling Mode” (on
or off).

LRESULT _PCMGWFN PCMGToggleRoadPicking();

(Deprecated in Version 28) Turns “Road Labeling Mode” on and off. When on,
clicking a road with the left mouse will place a shield on the road. Clicking again
will remove the shield.

 PC*MILER|Mapping User’s Guide 20

LRESULT _PCMGWFN PCMGSetPinPicking(BOOL onOff);

Turns pin picking on or off. When on, clicking a pushpin will display information
about that pin.

LRESULT _PCMGWFN PCMGGetPinPicking();

Gets the current status of “Pin Picking Mode”, whether on or off.

LRESULT DLLFUNC PCMGTogglePinPicking();

Turns “Pin Picking Mode” on and off. When on, clicking a pushpin displays
information about that pin.

LRESULT _PCMGWFN PCMGClearLabels();

Clears all labels created by the user when in “City Labeling” mode.

NOTE:If you zoom out from an area that you have custom labelled as described
above, the labels will disappear as the level of detail decreases. When you zoom
back in again, your labels will reappear.

LRESULT _PCMGWFN PCMGToggleRouteDistTooltip();

Toggles the state of distance to destination tooltips on route lines.

LRESULT _PCMGWFN PCMGSetRouteDistTooltip(BOOL onOff);

Used to explicitly set the state of distance to destination tooltips on route lines on
or off.

LRESULT _PCMGWFN PCMGGetRouteDistTooltip ();

Returns the current state of the distance to destination tooltip feature, on or off.

3.4.5 Toggle Legends

NOTE:Legends can be dragged around the map window.

LRESULT DLLFUNC PCMGSetRoadLegend(BOOL onOff);

Turns the Road Legend on and off. The road legend identifies the road types
displayed in the map.

LRESULT _PCMGWFN PCMGToggleRoadLegend();

An alternate way to turn the Road Legend on/off.

 Chapter 3: Programming With the DLL Interface 21

LRESULT _PCMGWFN PCMGGetRoadLegend();

Gets the status of the “Road Legend” function, whether on or off.

LRESULT _PCMGWFN PCMGToggleRouteLegend();

Toggles the Route Legend on/off. The Route Legend identifies routes on the map
by color and number and may be dragged around the map.

LRESULT _PCMGWFN PCMGSetRouteLegend(BOOL onOff);

Explicitly sets the visibility state of the Route Legend, on or off.

LRESULT _PCMGWFN PCMGGetRouteLegend();

Returns the visibility of the Route Legend, on or off.

LRESULT DLLFUNC PCMGToggleRestrictionsLegend;

Toggles the visibilityf the Restrictions Legend on the map. This legend identifies
the PC*MILER|HazMat road types displayed on the map.

LRESULT DLLFUNC PCMGSetRestrictionsLegend(BOOL onOff);

Explicitly sets the visibility of the Restrictions Legend, on or off.

LRESULT DLLFUNC PCMGGetRestrictionsLegend;

Returns the visibility state of the Restrictions Legend, on or off.

LRESULT DLLFUNC PCMGToggleTrafficLegend;

Toggles the visibility of the Traffic Legend on the map. This legend identifies the
colors that are used to show traffic conditions on the map.

LRESULT DLLFUNC PCMGSetTrafficLegend(BOOL onOff);

Explicitly sets the visibility of the Traffic Legend, on or off.

LRESULT DLLFUNC PCMGGetTrafficLegend;

Returns the visibility state of the Traffic Legend, on or off.

LRESULT DLLFUNC PCMGSetScale(BOOL onOff);

Turns the Scale of Miles on and off. When distances are measured in kilometers,
displays a Scale of Kilometers.

 PC*MILER|Mapping User’s Guide 22

LRESULT _PCMGWFN PCMGGetScale();

Returns the visibility of the Scale of Miles legend, whether on or off.

LRESULT _PCMGWFN PCMGToggleScale();

Toggles the Scale of Miles on and off.

3.4.6 Adding or Removing Detail

LRESULT _PCMGWFN PCMGAddDetail();

Increases the number of roads, road names and city names displayed. Each call to
the function increases the level of detail by the same amount as zooming in a
level. May be called multiple times to dramatically increase the level of detail.

LRESULT _PCMGWFN PCMGRemoveDetail();

Decreases the number of roads, road names and city names displayed. Each call to
the function decreases the level of detail by the same amount as zooming out a
level. The function may be called multiple times to dramatically decrease the
level of detail.

LRESULT _PCMGWFN PCMGDefaultDetail();

Resets the number of roads, road names and city names displayed to the default.

LRESULT _PCMGWFN PCMGGetDetailAdjust();

Returns the detail level adjustment value; i.e. the amount the user has increased or
decreased the detail level over the base value.

LRESULT _PCMGWFN PCMGGetDetailLevel();

Returns the current detail level of the map.

3.4.7 Frame and Zoom Functions

LRESULT _PCMGWFN PCMGSetUSWindow();

Frames the continental United States.

LRESULT _PCMGWFN PCMGSetNAWindow();

Frames North America.

 Chapter 3: Programming With the DLL Interface 23

LRESULT _PCMGWFN PCMGSetCanWindow();

Frames Canada.

LRESULT _PCMGWFN PCMGSetMexWindow();

Frames Mexico.

NOTE:The above functions will not be supported for 32-bit in future releases of
PC*MILER|Mapping. Users should be using the new set of frame functions.

Use the following functions to frame different areas of the map.

LRESULT _PCMGWFN PCMGNumFrameAreas();
LRESULT _PCMGWFN PCMGGetFrameArea(int index, char FAR
*buffer, int bufSize);
LRESULT _PCMGWFN PCMGFrameArea(const char far *areaName);

PCMGNumFrameAreas()returns the number of frameable areas available.

Use PCMGGetFrameArea() to retrieve each frameable area name by index.
This function will fill the area name in the buffer. This area name stored in the
buffer should then be passed to PCMGFrameArea()to frame that particular
area. The return value of this function is the number of characters copied into the
buffer.

The following code creates a combo box that lists all the frameable area names:

int numAreas;
char buf[25];
int ret = 0;
numAreas = PCMGNumFrameAreas();
for (int i = 0; i < numAreas; i ++){
 ret = PCMGGetFrameArea(i, buf, 25);
 if (ret > 0)
 ComboBox->Items->Add(buf);
}

The following code frames the area that is selected in the edit region of the combo
box:

PCMGFrameArea(ComboBox->Text.c_str());

Currently there are eight frameable areas available: US, NA, Bermuda, Hawaii,
Greenland, Canada, Mexico, Puerto Rico.

LRESULT _PCMGWFN PCMGZoomIn();

 PC*MILER|Mapping User’s Guide 24

Zooms in one level. Equivalent to double-clicking with the left mouse. Will cause
more detail to appear on the map.

LRESULT _PCMGWFN PCMGZoomOut();

Zooms out one level. Will cause less detail to appear on the map.

Use the following function to zoom to a specified location on the map:

LRESULT _PCMGWFN PCMGZoomToPlace(const char FAR *place, int
radius);

PCMGZoomToPlace() returns -22 (UNKNOWN_LOCATION) if the
specified location cannot be geocoded or is invalid. Returns 0 on success.
Place can be any valid PC*MILER location (city-state, lat/long, etc.). Radius
is the preferred radius for the viewing scale, specified in distance units multiplied
by 10. For example, a value of “30” would be 3 miles or 3 kilometers, depending
on currently used distance units. A negative value will use the current viewing
scale – only the center of the map will change, the map scale stays the same. A
value of 0 for the radius will cause Mapping to use the default radius specified in
the PCMSERVE.INI, for example:

[Defaults]
FrameRadius=30

3.4.8 Layer Control Functions

LRESULT _PCMGWFN PCMGShowLayer(const char FAR *pLayerName);

LRESULT _PCMGWFN PCMGHideLayer(const char FAR *pLayerName);

Using these functions, you can show or hide a layer by name. Layers are groups
of features in the map. Some layers, like roads and political boundaries, are
provided with the map. Other layers, like groups of pins, routes and lines, are
created by the user.

LRESULT _PCMGWFN PCMGPlotLabel(const char FAR *layerID,
const char FAR *ID,const char FAR *importance, const char
FAR *style, const char FAR *locations,LPCSTR options);

Using this function, you can highlight a place on the map. This draws a stop label
similar to PC*MILER stops.

LRESULT _PCMGWFN PCMGDeleteLabel(const char FAR *layerID,
const char FAR *ID);

Using this function, you can delete a highlighted label from the map.

 Chapter 3: Programming With the DLL Interface 25

LRESULT DLLFUNC PCMGSetUseOverlapIcon(const char FAR
*playerName, BOOL onOff);

This function enables or disables the display of the overlap icon by layer for
multiple pins that overlap.

LRESULT DLLFUNC PCMGSetOverlapIconName(const char FAR
*playerName, const char FAR *pIconName);

Allows the user to specify the icon to be used by layer as an overlap icon.

3.4.9 Callback Functions

Callback functions are used to enable user interaction between the map and the
rest of the application, in particular, notification of mouse events related to pin
picking. This is provided so that users can override the default behavior that the
PC*MILER|Mapping window exhibits when the user is performing pin picking.
More information is available below in section 3.4.10, Callback Ability.

LRESULT DLLFUNC PCMGSetReceiver(HWND hWnd);

This function assigns the provided window handle to receive specific mouse event
messages from the PC*MILER|Mapping window. The PC*MILER|Mapping
window will send standard window messages to the specified window. This
window must have a standard message handling callback function defined or else
it will not receive any of these window messages. Read more on the types of
messages that are sent in section 3.4.10, Callback ability.

LRESULT DLLFUNC PCMGSetCallBack(BOOL onOff);

This function sets the use of callbacks on or off. If callbacks are turned on then
the PC*MILER|Mapping window will broadcast specific mouse event messages
to the previously designated window handle. When turned off, the mouse event
messages will not be broadcast and the PC*MILER|Mapping window will
perform the default mouse actions.

LRESULT_PCMGWFN
PCMGSetMouseInterceptCallback(MouseInterceptCallback
callback);

This function registers a callback function that will be passed a specific set of
mouse events as they happen on the map. This callback will be the first function
to receive these events and will give the user the first chance to act on them before
the PC*MILER map does. The specific mouse messages we will send to this
callback are:

WM_LBUTTONDOWN (0x0201)
WM_LBUTTONUP (0x0202)

 PC*MILER|Mapping User’s Guide 26

WM_LBUTTONDBLCLK (0x0203)
WM_RBUTTONDOWN (0x0204
WM_RBUTTONUP (0x0205)
WM_MOUSEMOVE (0x0200)
WM_MOUSELEAVE (0x02A3)

Parameters:
callback A function pointer to the user defined callback function

Return Values:
<0 Internal error, operation failed
>=0 Operation successful

The callback function signature is defined as follows:
typedef cdecl bool (*MouseInterceptCallback) (unsigned long mapID, unsigned
long mode, unsigned long msgID, long windowX, long windowY, unsigned long
modKeys);

Parameters:
mapID Unique ID of the map generating the mouse message
mode Value indicating current mode of the mouse. This mode is

PC*MILER-specific
msgID One of the seven mouse event ID’s listed above
windowX x window coordinate where the mouse event occurred
windowY y window coordinate where the mouse event occurred
modKeys Value indicating what (if any) modifier keys were pressed during

the mouse event

Return Values:
True Indicates that the callback has handled the given mouse message. This

will cause the PC*MILER map to bypass any further processing of this
mouse message.

False Indicates that the callback did not fully handle the message. The
PC*MILER map will be allowed to process this message as normal.

LRESULT_PCMGWFN PCMGSetMapResizeCallback(MapResizeCallback
callback);

This function registers a callback function that will be called after every map
resize event generated by the PC*MILER map. The callback is simply used to
pass the user information about the map after an event occurs.

Parameters:
callback A function pointer to the user-defined callback function.

Return Values:
<0 Internal error, operation failed

 Chapter 3: Programming With the DLL Interface 27

>=0 Operation successful

The callback function signature is defined as follows:
typedef cdecl void (*MapResizeCallback) (unsigned long mapID, long
zoomLevel, float latitude1, float longitude1, float latitude2, float longitude2);

Parameters:
mapID Unique ID of the map generating the resize event
zoomLevel Current zoom level of the map
latitude1 Current lower left latitude of the map projection rectangle in

decimal format
longitude1 Current lower left longitude of the map projection rectangle in

decimal format
latitude2 Current upper right latitude of the map projection rectangle in

decimal format
longitude2 Current upper right longitude of the map projection rectangle in

decimal format

3.4.10 Callback Ability

CRITICAL NOTE For PREVIOUS MAPPING CALLBACK USERS:In
Version 25, all mouse messages were updated to include the map ID value at the
end of the data string in lpData. Customer code that parses this string may have
to be updated to properly handle this new value at the end of the string.

PC*MILER|Mapping has the ability to broadcast specific mouse messages to the
calling application based on user interaction. There are four different mouse
actions that will cause a mouse event message to be broadcast:

1) Left mouse click of a pin
2) Right mouse click of a pin
3) General mouse movement
4) Mouse mode changed

If callbacks are turned on, a mouse event message will be generated and sent to
the registered callback window. The contents of the message are packed into a
COPYDATASTRUCT, which is defined below.

struct COPYDATASTRUCT
{

Unsigned long dwData;
Unsigned long cbData;
Void* lpData;

}

The contents of each field of this structure are detailed below:

 PC*MILER|Mapping User’s Guide 28

dwData: The PC*MILER|Mapping code puts two separate values inside of this
unsigned long value, one value is in the lower 16 bits, the other in the upper 16
bits. The upper 16 bits contains a value indicating the message type being
returned. The lower 16 bits contains a value indicating what the current mouse
mode is.

The upper 16 bits are the most important as this value will tell you which mouse
action occurred and dictates how the rest of the structure should be interpreted.
There are 5 possible values that can be returned from the PC*MILER|Mapping
mouse events:

1 = Mouse Move event.
2 = Mouse Mode Changed event.
9 = Left Mouse Click event on a selected pin.
10 = Left Mouse Click event on no pin.
11 = Right Mouse Click event on a pin or set of pins.

In C/C++ customers can use the macro HIWORD() to extract the upper 16 bits of
this variable and LOWORD() to extract the lower 16 bits.

cbData: The value of this variable tells us how many bytes are pointed to by the
lpData variable.

lpData: If this variable is not NULL, it will point to a C-style string containing
more detailed information related to the mouse event being reported. In each
case, if there are multiple individual pieces of data they will be separated by the |
character. Below are the details of what each mouse mode puts into this string.

Mouse Move: “location|mapID”. The location could either be a
lat/long pair, a city name, or a road name. It is dependent on what the mouse
cursor is currently moving over.

Right Mouse Click on a pin:
“pin_layer_name|pin_name|pin_location|x|y|mapID”

Left Mouse Click: message type 9:
“pin_layer_name|pin_name|pin_location|mapID”
message type 10: ”None|mapID”

Mouse Mode Change: “mapID”

Sample code including lat/long coordinates is below:

 Chapter 3: Programming With the DLL Interface 29

/***
* This file contains two examples of how to use the
PCMGWIN DLL from 'C' and 'C++'. Code similar to this
structure can be used from Delphi, Visual Basic,
PowerBuilder, etc. This example contains code to handle
the callback feature.
* Note: this program requires you to link with BOTH the
libs for PCMGMAP.DLL and PCMGWIN.DLL. i.e. link with the
files PCMGMAP.LIB and PCMGWIN.LIB.
* Copyright 1999-2014, ALK Technologies, Inc. ALL RIGHTS
RESERVED.
***/
#include <windows.h>
#include <owl\dialog.h>
#include <stdio.h>
#include <string.h>
#include "pcmgmap.h"
#include "pcmgwin.h"
HWND OpenMapWindow(HWND parentWindow);
void PlotExamples();

char iniFileName[100] = "pcmserve.ini";

#ifdef __cplusplus
#include <owl/applicat.h>
#include <owl/framewin.h>
#include <owl/listbox.h>

#define BUFLEN 256
#define LISTID 100
#define LISTWIDTH 600
#define LISTHEIGHT 400
#define CM_SAVE 0x100
class TMsgList : public TListBox
{
 public:
 TMsgList();
};

TMsgList::TMsgList() : TListBox(0, LISTID, 0, 0,
LISTWIDTH, LISTHEIGHT)
{

Attr.Style |= LBS_DISABLENOSCROLL |
LBS_NOINTEGRALHEIGHT;

 Attr.Style &= ~LBS_SORT;
}

/**/

 PC*MILER|Mapping User’s Guide 30

class TEngineWindow : public TFrameWindow
{
 public:
 TEngineWindow(const char *title);
 int AddString(const char *str)

{ return(pListBox->AddString(str)); }
 LRESULT StringMessage(WPARAM, LPARAM);
 // Save menu command...
 void SetupWindow();
 private:
 TMsgList *pListBox;
 DECLARE_RESPONSE_TABLE(TEngineWindow);
};
DEFINE_RESPONSE_TABLE1(TEngineWindow, TFrameWindow)
 EV_WM_SYSCOMMAND,
 EV_MESSAGE(WM_COPYDATA, StringMessage),
END_RESPONSE_TABLE;

LRESULT TEngineWindow::StringMessage(WPARAM wParam,
LPARAM lParam)
{
 int ret;
 char *str = NULL;
 char buffer[BUFLEN];

 COPYDATASTRUCT *cds = (COPYDATASTRUCT *)lParam;
 if (!cds)
 return(-1);

 switch (HIWORD(cds->dwData))
 {

case 1:
 // lpData contains the lat long coords

wsprintf(buffer, "MSG_STRING: %s", (char
*) cds->lpData);

 return 1;
 break;
 case 2:

/* These are the label/pick modes that can be
selected from the menu */

 // No Mode = 0
// Label Roads = 1
// Label Cities = 2
// Pick Pins = 4
 wsprintf(buffer, "MSG_MODE: %ld",

(long) LOWORD(cds->dwData));
 break;
case 9:

 Chapter 3: Programming With the DLL Interface 31

/* when the user clicks with the left mouse button
then the folowing information is returned: */

// layerId, pinId, location
// the information is separated with '|''s

wsprintf(buffer, "MSG_PICK_SYMBOL:
%ld", (long) cds->lpData);
break;

/* when the user clicks with the left mouse
button on any empty location on the map, then
the folowing information is returned (works
only in pin-picking mode): */
 case 10:
 /* location (latitude/longitude) precision can
be controlled by LatLongDigits parameter in
Pcmserve.ini (see Appendix) */

wsprintf(buffer, "MSG_PICK_LOCATION:
%ld", (long) cds->lpData);
break;

case 11:
/* Only if the PCMGSetCallBack has been called
to enable callbacks i.e. onOff = 1, then the
menu, when the right mouse is clicked, has been
disabled, so that the application can bring up
its own menu */
/* The following pin information is also
returned:
layerId, pinId, location, xCoord, yCoord */
/* the information is separated with '|''s */

wsprintf(buffer, "MSG_RT_MOUSE_CLK: %ld",
(long) cds->lpData);
break;

 }

str = buffer;
 if (pListBox && str)
 {

ret = pListBox->AddString(str);
// Do not delete the string: is managed by
calling app.
return(ret);

}
else

 return(-1);
}

TEngineWindow::TEngineWindow(const char *title) :
TFrameWindow(0, title, new TMsgList(), TRUE)

 PC*MILER|Mapping User’s Guide 32

{
pListBox = dynamic_cast<TMsgList *>
(GetClientWindow());

}
void TEngineWindow::SetupWindow()
{

TFrameWindow::SetupWindow();
}

/***
COMMON FUNCTIONS:
***/

/* Open a new PC*MILER|MapWin window */
HWND OpenMapWindow(HWND parentWindow, char *iniFile)
{

HWND mapWin;

/* Load map data. Pass in calling application name and
INI file name */

if (PCMGInitMap("Test App", iniFile))
 {

/* Must have a valid parentWindow */
if (!parentWindow)

parentWindow = ::GetDesktopWindow();
/* Create an OVERLAPPED window (not a child window) */

mapWin = PCMGCreateMapWindow(parentWindow,
"PC*MILER Test MapWindow", 400, 300);

 }
return(mapWin);

}

/***
* CLASS LIBRARY EXAMPLE (BORLAND OWL SPECIFIC):
* WARNING: This will only compile under BORLAND 4.0 or
later! You must adapt this code for Visual C++ and MFC.
***/

class TestApp : public TApplication
{

 public:
TestApp (char far *name) : TApplication(name)
 { }
~TestApp()
 { PCMGCleanupMap(); }
void InitMainWindow();

 Chapter 3: Programming With the DLL Interface 33

void InitInstance();
};
void TestApp::InitInstance()
{

HWND mapWindow;
TApplication::InitInstance();

/* Initialize and create the map window */
mapWindow = OpenMapWindow(MainWindow->HWindow,
iniFileName);
 PCMGSetReceiver(MainWindow->HWindow);
 PCMGSetCallBack(1);
 if (!mapWindow)

::MessageBox(MainWindow->HWindow, "Could
not create PCMGW32 DLL map", "Error",
MB_OK);

}

void TestApp::InitMainWindow()
{

TFrameWindow *pFrame;

/* Create the application's main window */
pFrame = new TEngineWindow("Test App [Main

Window]");
SetMainWindow(pFrame);
pFrame->Attr.X = 100;
pFrame->Attr.Y = 100;
pFrame->Attr.W = 600;
pFrame->Attr.H = 400;

}

int OwlMain(int argc, char **argv)

{
if (1 < argc)
 strcpy (iniFileName, argv[1]);
TestApp testApp("Test App");
return(testApp.Run());

}

#endif /* #ifdef __cplusplus */

 PC*MILER|Mapping User’s Guide 34

3.4.11 Displaying Pins, Trips, and Lines in the Map Window

There are several ways to display pins in the map window using the Mapping
DLL, pcmgmp32.dll (for PC*MILER|Streets, pmwscomm.dll).

One way is to link both the MapWindow DLL and the Mapping DLL with your
application. In this case, the Mapping DLL directly calls the MapWindow DLL
functions.

Or you can have two separate applications linking each DLL individually. In this
case, PC*MILER|Mapping sends Windows messages to the map window to
display the icons. When the map window receives these messages, it processes
these messages to display icons on the map.
Make sure that you have the map window open before calling any of the
PC*MILER|Mapping functions because the communication fails otherwise.

By default, the PC*MILER|Mapping communicates with a window whose title
has ‘PC*MILER’ as the first eight characters. However, you can create a map
window with any title. Use the functionPCMGSetDisplayWindow(provided in
PC*MILER|Mapping) to connect the map window to PC*MILER|Mapping.
PCMGSetDisplayWindowis used to give PC*MILER|Mapping a handle to the
map window.

You need to call SetDisplayWindow before you call any other
PC*MILER|Mapping functions.

If you are linking both the DLL’s in your application, then your code should look
like this:

HWND mapWin;

if (PCMGInitMap("Test App", iniFile))
{
/* Create an OVERLAPPED window */
mapWin = PCMGCreateMapWindow(parentWindow, "Test Map",
400, 300);

/* Now point PC*MILER|Mapping DLL at the new map window
and DLL */
 if (mapWin)
 {
PCMGSetDisplayWindow (mapWin);
PCMGPlotPin("Pins", "Truck1", "1", "Red Truck",
"Chicago, IL", "Test Truck");
 }
}

 Chapter 3: Programming With the DLL Interface 35

If you don’t link these two DLLs together, and if you are trying to display icons in
the map window from other applications that are linked with the Mapping DLL,
you need to do the following:

1. Find the map window’s window handle.

2. Call PCMGSetDisplayWindow with the handle found in Step 1.

The sample Borland C++ program to do this is below. The complete example
program is in the file mpwint32.cpp located in the mapping directory of your
PC*MILER installation.

int DemoRun()
{
 HWND mapwin = FindDisplayWindow();
 if (mapwin)
 {
PCMGSetDisplayWindow (mapwin);
PCMGPlotPin("Layer2", "A Pin", "1", "Red Truck 5",
"Pittsburgh,PA", "Label1|Label2|Label3");
 }
 return 0;
}

static HWND FindDisplayWindow()
{
 HWND win;

// Return value is 0 if found, 1 if not.
if (0 == EnumWindows(FindClientWin, (long) &win)) return
(win);
 else
 return (NULL);
}

//Title of the map window
#define MAP_WIN_TITLE "Test Map"

static BOOL CALLBACK FindClientWin (HWND win, LPARAM
param)
{
 char buffer[256];
 HWND *pWin = (HWND *)param;
// If window has no title, go to the next one.
 if (0 == GetWindowText(win, buffer, 255))
 return(1);

 PC*MILER|Mapping User’s Guide 36

if(0 == strncmp(MAP_WIN_TITLE, buffer,
strlen(MAP_WIN_TITLE)))
 {
 *pWin = win;
 return(0);
 }
 return(1);
}

3.4.12 Saving .GIF Images

The following function enables you to save .GIF map images.

long PCMGCreateGifFile(long sx, long sy, char* fileName,
long option);

This function saves the .GIF image of the current map to a given file. X and y are
the dimensions of the image. Returns 1 on success. The following constants
represent the five possible options for positioning the legend:

0 NO_SCALE
1 TOP_LEFT_SCALE
2 TOP_RIGHT_SCALE
3 BOTTOM_LEFT_SCALE
4 BOTTOM_RIGHT_SCALE

BOTTOM_RIGHT_SCALE is the default position.

3.5 Plot Functions

The advanced interface to the PC*MILER|Mapping functions gives greater
control over when and how pins, routes and lines are drawn, and allows data
about a pin to be displayed in a dialog box when the pin is chosen.

All arguments are strings, and the separator between elements in stops, styles,
options and labels is a vertical bar (‘|’). For example, ‘Princeton, NJ|Chicago,
IL|90210’ is a valid series of stops, and ‘Red|5’ is a valid style. The separator for
an importance range is two periods (“..”). For example, ‘1..4’ is a valid
importance range, as is simply ‘4’ (the trip appears at levels 4 and higher).

The user can group pins into “layers”, or “pinmaps.” These layers can be turned
on and off by the user through PC*MILER|Mapping function calls. The user of
the map can also click on the pin symbols to invoke information about the pins.

 Chapter 3: Programming With the DLL Interface 37

Pins (that are represented as “Circles” and “Squares”) and trip lines, and straight
lines can be displayed with different colors.

These functions are available in the Excel VB script except where noted.

3.5.1 Pin and Label Functions

NOTE:See the following sections for descriptions of how to assign alias names to
colors and bitmaps, and how to create custom settings for fonts in labels.

long PCMGPlotPin(LAYER layerID, OBJECT_ID ID, IMPORT
importance, MARKER symbol, LOCATION location, PIN_LABEL
labels);

Create or update a pin. The pin is uniquely identified by layerID and ID. If the
given pin does not exist, it is created. If it does exist, all data for the pin is
updated. The return code is negative if there is an error. If the layer identified by
layerID does not exist, then a layer is created.

The field ID can be any text string.

The field importance determines a level of importance for the given pin. The
importance of a pin determines at what level of detail the pin is drawn. Level of
detail works as follows: as the user zooms in to tighter areas on the map, the level
of detail increases. This means that less significant roads, places, and pins come
into view as the user zooms in. There are six levels of detail.

For pins, importance can be a number between 1 and 6. Importance level 1 is the
most important; pins with importance level 1 are always shown. Pins with
importance level 6 are only shown when the user is zoomed in very tight.

If you do not care about importance, specify “1” for the importance argument.
Pins with importance level 1 will always be shown.

Importance can be specified as a range, such as “1..3”. If a pin’s importance is
specified as a range, then it will only be shown when the map’s level of detail
falls into that range. For example, suppose a pin is assigned the importance range
“1..5”. The pin will show up when the map’s level of detail is between 1 and 5.
Detail level 5 roughly corresponds to a zoom level of a single state. Therefore,
the pin will not show up when the map is zoomed in tighter than a single state.

Ranges can be useful when trying to reduce clutter on the map. Using importance
ranges, one could set up different views of the same data, each with different
levels of detail. For example, suppose one is trying to plot 200 trucks in two
neighboring states. When the map is zoomed to the entire United States, the 200
truck icons in those two states become very cluttered. To solve this problem, one

 PC*MILER|Mapping User’s Guide 38

could create two pins--one for each state--that are displayed at importance levels
“1..3”. Then, the 200 truck pins could be marked with importance levels “4..6”.

This has the effect of showing two pins--one in each state--at the U.S. level. As
the user “zooms down” to the state level, the two aggregate pins will disappear,
and the 200 truck pins will appear.

The field symbol must specify a valid symbol. Symbols can either be the names of
.BMP files, or they can be built-in PCMGS symbols. See section 4.4.2,
PC*MILER|Mapping Icons for symbols provided with PC*MILER|Mapping.

The field location is a text string specifying one of the following:

Location Type Description Examples

Postal Code A postal code. (See the PCMSERVE.INI
Appendixon setting the U.S. vs. Mexican
postal code format default.)

80903

City, State A PC*MILER city name, followed by two-
character state abbreviation.

Princeton, NJ

Canadian Postal
Code

The six character postal code in the
following format: L#L #L#. (Available as
an add-on data module.)

K7L 4E7

SPLC Code The six or nine digit SPLC. (Available as an
add-on data module.)

221094000
221099240

Latitude,
Longitude

Two coordinates are specified here. Each
coordinate can have one of two formats.
The first format is an 8 character string,
described below. The second format is
decimal degrees.
In the 8 character string format, a coordinate
is specified as follows:
Digits 1-3 specify the hours portion of the
measurement.
Digits 4-5 specify the minutes portion of the
measurement.
Digits 6-7 specify the seconds portion of the
measurement.
Digit 8 is one of the following: ‘N’, ‘n’,
‘W’, ‘w’.
The last digit determines if the coordinate is
a latitude or longitude. The last character is
optional. If it is NOT present, then the first
coordinate is assumed to be latitude and the
second coordinate is assumed to be
longitude.
In the decimal degrees format, the two

0401750N,0742131
W
0401750 / 0742131
0742131w
0401750n
040.2972N,
074.35861w

 Chapter 3: Programming With the DLL Interface 39

coordinates are expressed as decimal
degrees. Again, the last character is one of
‘N’, ‘n’, ‘W’, ‘w’. This determines whether
the given coordinates is latitude or
longitude. If the last character is NOT
present, then the first coordinate is assumed
to be the latitude.
The coordinates must be separated by at
least one of the characters from the
following set: space (‘ ‘), comma (‘,’),
forward slash (‘/’), backward slash (‘\’),
semicolon (‘;’), and colon (‘:’).

Custom Place A custom place name created in
PC*MILER.

My House

Place Name with
local Street
Address

Available only with PC*MILER|Streets. A
street address can be added to any of the
above place names, must be separated from
the place name by a semi-colon (;).

Kingston, NJ; 16
Laurel Avenue

The field labels is an optional list of up to 8 values for PC*MILER to store and
display in an information dialog when the pin is clicked on. The values in the list
are delimited by vertical bars.

For example, the following function call will display a red route 4 pixels wide
from Princeton to San Diego via Chicago, generated using PC*MILER Shortest
routing, and visible when zoomed in at least 3, but not more than 5, times:

retCode = PCMGPlotPin(“MyLayer”, “MyPin”, “3..5”, “Red
Truck”,“Chicago, IL”, “On time|Carrying Oranges|Unit
35B”);

long PCMGDeletePin(LAYER layerID, OBJECT_ID ID);

This function removes the pin identified by ID in the layer layerID.

long PCMGFramePin(LAYER layerID, OBJECT_ID ID);

This function zooms the map to center the pin specified by layerID and ID.

long PCMGPlotLabel(LAYER layerID, OBJECT_ID ID);

This function highlights a place on the map. It draws a stop label similar to
PC*MILER stop labels.

long PCMGDeleteLabel(LAYER layerID, OBJECT_ID ID);

This function removes a stop label from the map.

 PC*MILER|Mapping User’s Guide 40

3.5.2 Assigning Alias Names To Colors

To assign alias names to colors, use the [Map\Colors] section of the
map_opts.ini file located in your PC*MILER installation folder in ALK
Technologies\PCMILER28\App.

For example, the color RGB(255,0,255) can be given the name “Purple” by
adding:

[Map\Colors]
Purple=(255,0,255)

3.5.3 Assigning Alias Names To Bitmaps

The bitmap image aliases used by thePCMGPlotPin function are stored in the
[Map\Bitmaps] section of the map_opts.ini file located in your PC*MILER
installation folder – usually in C:\ALK Technologies\PCMILER28\App. You can
create your own alias names that point to the location of additional bitmaps by
adding lines to this section of the .ini file. Here is an example of such a line:

[Map\Bitmaps]
Yellow Lpushpin=c:\ALK Technologies\PCMILER28\Bitmaps\ lpin_y.bmp

3.5.4 Setting a Custom Font For Labels

The default font for pins and labels created using the functions
PCMGPlotLabel and PCMGPlotPin (see section 3.5.1) is ‘System’, size=16,
bold. You can change this default setting in the map_opts.ini file, located in your
PC*MILER installation folder in ALK Technologies\PCMILER28\App.

In this .ini file, font styles for specific layers are described in sections with the
heading [Map\Pinmaps\Labels\<Layer Name>]. “Layer” is the first argument
in the PCMGPlotPin and PCMGPlotLabel functions. So, for example, to set
the font style for a layer named “Homes”, a section like this would be added to
the map_opts.ini:

[Map\Pinmaps\Labels\Homes]
FontHeight=12
FontName=“Arial”
FontWeight=“Bold” (could be also “Regular”)
FontItalic=1
FontColor=“Purple” (could also be an integer, see Assigning Alias Names to
Colors below)

NOTE:This logic does not apply to trips. Stop labels always use the default
(System, size 16) font. The Mapping DLL could be modified to apply the logic
used for labels and pins for trips if necessary.

 Chapter 3: Programming With the DLL Interface 41

3.5.5 Pin Label Positioning

The position of a label can be specified by concatenating the “ | “ character plus
one of (LEFT, RIGHT, BOTTOM, TOP) to the end of the bitmap parameter in
the PCMGPlotPin function.

Examples:

PCMGPlotPin (“layer1”, “WhiteHouse”, “1..3”, “RED CIRCLE
5|LEFT”, “20500 Washington, CD; 1600 Pennsylvania Avenue”,
“White House”);

PCMGPlotPin (“layer1”, “WhiteHouse”, “1..3”,
“whitehouse.bmp|LEFT”, “20500 Washington, CD; 1600
Pennsylvania Avenue”, “White House”);

3.5.6 Trip and Line Functions

IMPORTANT NOTE:Drawing more than about 50 route lines on the map
simultaneously is not recommended, individual routes cannot be seen clearly
when there is alarge number of them on the map.

long PCMGPlotTrip(LAYER layerID, OBJECT_ID ID, IMPORT
importance, STYLE style, LOCATION locations, PIN_LABEL
options);

Draws a trip’s route over the PC*MILER network where layerID is the feature
layer to add the new trip to, ID is its unique identifier, importance is a range of
numbers denoting which levels of detail it will appear at, style is what color and
width to use, locations is the list of stops (PC*MILER place names only) that
make up the trip, and options is a list of routing options PC*MILER will use to
calculate the route.

All arguments are strings, and the separator between elements in stops, styles, and
options is a vertical bar (‘|’). For example, ‘Princeton, NJ|Chicago, IL|90210’ is a
valid series of stops, and ‘Red|5’ is a valid style. The separator for an importance
range is two periods (“..”). For example, ‘1..4’ is a valid importance range, as is
simply ‘4’ (the trip appears at levels 4 and higher).

Valid routing options are:

Routing types: ‘PRAC’, ‘SHORT’, ‘NATL’, ‘TOLL’, or ‘53FT’. Case is not
important and the following will also work: ‘Practical’, ‘Shortest’, and ‘National’.
(See the PC*MILER User’s Guide or Help for descriptions.)

 PC*MILER|Mapping User’s Guide 42

Hub mode: Routes will display in Hub mode if you use ‘HUB’ as an option, and
in regular mode with ‘NOHUB’.

Borders: Routes will stay within a country if you specify borders as ‘CLOSED’,
or will cross borders if you specify ‘OPEN’.

Custom: Routes will display respecting the avoided and favored roads set in
PC*MILER. You can specify the option as ‘CUSTOM’ or ‘NOCUSTOM’.

Use Highway Only: ‘USESTREETS’ to use local streets in route calculations, or
‘USEHIGHWAY’ to calculate the route using an air distance from the midpoint
of the nearest highway segment to the postal code or city/state destination.

Vehicle Type: ‘HEAVY’ or ‘LIGHT’. Case is not important and the following
will also work: ‘Heavy’ and ‘Light’.

Haz types: ‘GENERAL’, ‘EXPLOSIVE’, ‘INHALANT’, ‘RADIOACTIVE’,
‘CORROSIVE’, or ‘FLAMMABLE’. (See the PC*MILER User’s Guide or Help
for descriptions.)

NOTE:You can set defaults for these and other routing and management options
in the pcmserve.ini file (see Appendix B for a list of pcmserve.inisettings).

NOTE for PC*MILER|Streets Users:When stops are city names or postal
codes, by default “Highway Only” routing is used. See the PC*MILER User’s
Guide for a description of this option, and Appendix B in this guide to change the
default.

For example, the following function call will display a red route 4 pixels wide
from Princeton to San Diego via Chicago, generated using PC*MILER Shortest
routing, and visible when zoomed in at least 3, but not more than 5, times:

retCode = PCMGPlotTrip(“MyLayer”, “MyRoute”, “3..5”, “Red|4”,
“08540|Chicago, IL|San Diego, CA”, “Short|NOHUB”);

long PCMGDeleteTrip(LAYER layerID, OBJECT_ID ID);

This function removes the trip identified by ID in the layer layerID.

long PCMGFrameTrip(LAYER layerID, OBJECT_ID ID);

This function zooms the map to include a view of the entire trip identified by ID
in the layer layerID.

long PCMGPlotLine(LAYER layerID, OBJECT_ID ID, IMPORT
importance, STYLE style, LOCATION locations);

where layerID is the feature layer to add the new line to, ID is its unique
identifier, importance is a range of numbers denoting which levels of detail it will

 Chapter 3: Programming With the DLL Interface 43

appear at, style is what color and width to use, and locations is the list of points
(PC*MILER place names or LatLong coordinates) that make up the line.

All arguments are strings, and the separator between elements in points and styles
is a vertical bar (‘|’). For example, ‘Princeton, NJ|Chicago, IL|90210’ is a valid
series of points, and ‘Red|5’ is a valid style. The separator for an importance
range is two periods (“..”). For example, ‘1..4’ is a valid importance range, as is
simply ‘4’ (the trip appears at levels 4 and higher).

retCode = PCMGPlotLine(“MyLayer”, “MyRoute”, “3..5”, “Red|4”,
“08540|Chicago, IL|San Diego, CA”, “Short|NOHUB”);

long PCMGDeleteLine(LAYER layerID, OBJECT_ID ID);

This function removes the line identified by ID in the layer layerID.

3.5.7 Pinmap Functions

The user can group pins into “layers”, or “pinmaps.” These layers can be turned
on and off by the user through PC*MILER|Mapping function calls or interactively
from within PC*MILER.

The user of the map can click on the pin symbols to invoke information about the
pins. In PC*MILER, go into ‘picking’ mode by clicking on the ‘Pick Pin’ speed
button in the tool bar. Once in ‘Pick Pin’ mode, clicking once on a pin in the map
will invoke an information dialog containing the data sent across with
PCMGPlotPin().

long PCMGSetInfoLabels(LAYER layerID, OBJECT_ID id,
IMPORTANCE importance, MARKER symbol, LOCATION loc,
PIN_LABEL labels);

Sets the “titles” of the given pinmap layer identified by layerID. The titles form
the left-hand column in pop-up information windows which are invoked when the
user clicks on a pin in the map. If the pinmap identified by layerID does not
exist, then a pinmap with that name is created.

ID is the label for the id of the chosen pin.

Importance is a space filler and is not displayed.

Symbol is the label for the symbol of the chosen pin.

Loc is the label for the location of the chosen pin.

 PC*MILER|Mapping User’s Guide 44

Labels contains up to eight titles for the eight data fields which may be passed
from PCMGPlotPin. If they are not specified, the default labels are
“Data1..Data8”.

For example:

retCode = PCMGSetInfoLabels (“MyLayer”, “ID:”,
“Importance”, “Symbol:”, “Location:”, “Store:|Time:
|Move:|Product”)

long PCMGDeletePinmap(LAYER layerID);

This function removes the layer identified by layerID from the map. All pins in
the layer are deleted.

long PCMGShowPinmap(LAYER layerID, BOOL show);

This function changes the visibility of the layer specified by layerID. If the show
parameter is non-zero, the layer is visible. If the show parameter is zero, the layer
is hidden. It is NOT deleted. Layers can be shown or hidden as often as desired.

long PCMGFramePinmap(LAYER layerID);

This function zooms the map to include all of the pins in the pinmap layer
layerID.

long PCMGDeleteTripLayer(LAYER layerID);

This function removes the layer identified by layerID from the map. All trips in
the layer are deleted.

long PCMGFrameTrip(LAYER layerID);

This function zooms the map to include all of the pins in the pinmap layer
layerID.

long PCMGFrameTripLayer(LAYER layerID);

This function zooms the map to include all trips in the trip layer layerID.

3.5.8 Map Region Functions

The following functions can be used in applications using PC*MILER|Worldwide
or PC*MILER|DTOD mapping, when region selection is needed.

long PCMGNumRegions(int level);

long PCMGGetRegionName(int level);

 Chapter 3: Programming With the DLL Interface 45

long PCMGSwitchRegion(int level);

PCMGNumRegions() returns the number of map regions (“NA”, “Europe”,
“Asia”, etc.).

As an example, if a web menu is being built, assume “N” number of regions is
returned. PCMGGetRegionName() is then called (in a loop) to get each
region’s name, passing indexes from 0 through N, and the region names are added
to the menu. Example:

char region [100];
int num_regs;
num_regs = PCMGNumRegions();

for (int i = 0; i < num_regs; i++)
{
PCMSGetRegionName (i, region, 100);
}

When the user of the menu picks a region, the software calls
PCMGSwitchRegion() to zoom in on this region.

LRESULT _PCMGWFN PCMGSetDefaultRegion(char FAR *regionId);

LRESULT _PCMGWFN PCMGGetDefaultRegion(char FAR *regionId,
int bufSize);

Use PCMGSetDefaultRegion to set a default region; regionId can be ‘NA’,
‘SA’, ‘Africa’, ‘Asia’, ‘Europe’, ‘ME’, or ‘Oceania’.
PCMGGetDefaultRegion returns the existing default region.

3.6 Geofence and Highlight Functions

NOTE:Two settings in the PCMSERVE.INI file can be edited to control the
autosaving of road preferences on shutdown. See Appendix B, The
PCMSERVE.INI File and look under [MappingOptions] in the INI.

3.6.1 Geofence Functions

A “geofence” is a virtual perimeter assigned to a geographic area so that when the
perimeter of that selected area is crossed, a notification is generated. It may be
used in many different scenarios, for example:

 Drawing a zone around a warehouse to identify a delivery or billing zone.

 PC*MILER|Mapping User’s Guide 46

 Alerting dispatchers when a vehicle leaves a designated area, for example,
leaving New York City when they aren’t authorized to do so.

 Receiving an alert if an asset has crossed into a high crime area.

New tools were added to PC*MILER Interactive and PC*MILER|Mapping in
Version 25 to create geofences and assign different sizes, colors, and locations to
them. Each geofence can be set to generate a route warning identifying when a
route enters/exits its perimeter.

In PC*MILER Interactive users can perform the following tasks related to
geofencing:

 Assign and modify the characteristics of a geofence:

- Define its shape – set it to a circle, rectangle, or user-defined polygon
- Define its coloring – define the border color, border width and fill color
- Define its size – identify perimeter boundaries using the provided shapes

or use the free form drawing tools

 Uniquely name an individual geofence

 Create, modify, delete and name sets of geofences that consists of one or
more geofences

 Use the geofence’s perimeter to generate route alerts/warnings in reports
when the perimeter is crossed

 Use the geofence’s perimeter to consider the roads in the geofenced area as
avoided so that when a route is generated it will not consider those roads in
route calculations

 Turn on/off a geofence displayed on the map as well as its status when
generating routes

In PC*MILER|Mapping, the functions described below are used to plot and
manage geofences, in sets or one by one, on the map.

LRESULT _PCMGWFN PCMGAddGeofence(const char FAR *pName,
char cShapeType, const char FAR *pPoints);

Creates a new geofence based on a collection of points.
 pName = name of the newly-created geofence
 cShape = the type of shape of the geofence
 pPoints = the collection of points that represents the new geofence

cShape can be either 0, 1, or 2. These values correspond to a specific geofence
shape type. 0 = Rectangle, 1 = Circle, 2 = Free form polygon. This shape type
will govern what pPoints must contain (described below).

pPoints should be a string containing a list of lat long coordinates that will be
used to define the boundaries of the new geofence. The required format of this

 Chapter 3: Programming With the DLL Interface 47

string is given below. If creating a rectangular geofence, there must be 2 lat/long
coordinates (no more, no less) which define two opposing corners of the
rectangle. A circular geofence must be defined in the same way. In this case the
rectangle will define the bounding box for the desired circle.

If creating a free-form polygon geofence, there must be at least 3 distinct lat longs
given to form a valid polygon. There is no upper limit on the number of points
that can be given for a free-form polygon. The order that the points are given in
will be the same order used to render the final polygon. It is not necessary to
repeat the first vertex again at the end of the list.

pPoints valid string format: “lat1,long1|lat2,long2|lat3,long3|…”

LRESULT _PCMGWFN PCMGDeleteGeofence(unsigned long fenceID);

Deletes an existing geofence, using its ID.

LRESULT _PCMGWFN PCMGActivateGeofence(unsigned long
fenceID, int iActiveState);

Activates the specified geofence and sets its active state to one of two possible
states. iActiveState can be either 0, 1, or 2:
0 = The geofence is turned off and will not be actively drawn on the screen or

used for routing/reporting purposes.
1 = The geofence will be drawn on the map and will only generate report

warnings when a route passes through it. If the use of custom roads is turned
on, a geofence in this active state will not be avoided by routes.

2 = The geofence will be drawn on the map and will generate a report warning if a
route passes through it. If the use of custom roads is turned on, a geofence in
this state will be actively avoided for all routes.

LRESULT _PCMGWFN PCMGIsGeofenceActive(unsigned long
fenceID);

Retrieves the activation status of the specified geofence.

LRESULT _PCMGWFN PCMGModifyGeofenceColor(unsigned long
fenceID, unsigned char R, unsigned char G, unsigned char
B);

Modifies the color of the area inside the perimeter of a specified geofence by
supplying R,G,B values for the color.

LRESULT _PCMGWFN PCMGModifyGeofenceBorderColor(unsigned
long fenceID, unsigned char R, unsigned char G, unsigned
char B);

Modifies the color of the perimeter of a specified geofence by supplying R,G,B
values for the color.

 PC*MILER|Mapping User’s Guide 48

LRESULT _PCMGWFN PCMGFindGeofenceID(const char FAR *pName);

Retrieves the ID of a specified geofence, using its assigned name.

LRESULT _PCMGWFN PCMGSetGeofenceName(unsigned long fenceID,
const char FAR *pName);

Renames an existing geofence, pName = the new name.

LRESULT _PCMGWFN PCMGGetGeofenceName(unsigned long fenceID,
char FAR *pName, int bufLen);

Retrieves the name of an existing geofence, identified by its ID.

LRESULT _PCMGWFN PCMGAddGeofenceSet(const char FAR *pName);

Creates a new geofence set based on the name provided by the user.

LRESULT _PCMGWFN PCMGAddGeofenceToSet(unsigned long
fenceID, unsigned long setID);

Adds an existing geofence to an existing set based on the geofence ID and set ID.
If the geofence is already a member of another set then it will automatically be
removed from the old set and put into the new set. If either the geofence or the
set does not exist, an error will be returned.

LRESULT _PCMGWFN PCMGRemoveGeofenceFromSet(unsigned long
fenceID, unsigned long setID);

Removes a geofence from an existing geofence set based on the geofence ID and
set ID.

LRESULT _PCMGWFN PCMGDeleteGeofenceSet(unsigned long
setID);

Deletes an existing geofence set.

LRESULT _PCMGWFN PCMGActivateGeofenceSet(unsigned long
setID, int iActiveState);

Activates a geofence set based on the set ID and assigns it to one of two possible
states. iActiveState can be either 0, 1, or 2:

0 = The set is turned off and will not be actively drawn on the screen or used for
routing/reporting purposes.

1 = The set will be drawn on the map and will only generate report warnings

when a route passes through one of its geofences. If the use of custom roads
is turned on, sets in this active state will not be avoided by routes.

 Chapter 3: Programming With the DLL Interface 49

2 = The set will be drawn on the map and will generate a report warning if a route
passes through one of its geofences. If the use of custom roads is turned on,
the set in this state will be actively avoided for all routes.

LRESULT _PCMGWFN PCMGIsGeofenceSetActive(unsigned long
setID);

Queries the activation status of a geofence set based on the set ID.

LRESULT _PCMGWFN PCMGFindGeofenceSetID(const char FAR
*pName);

Queries the ID of a geofence set based on its name.

LRESULT _PCMGWFN PCMGModifyGeofenceSetColor(unsigned long
setID, unsigned char R, unsigned char G, unsigned char B);

Modifies the color within the perimeter of the geofence set by the supplying
R,G,B values of the desired color.

LRESULT _PCMGWFN PCMGModifyGeofenceSetBorderColor(unsigned
long setID, int width, unsigned char R, unsigned char G,
unsigned char B);

Modifies the width and color of the perimeter of the geofence set by the supplying
R,G,B values of the desired color.

LRESULT _PCMGWFN PCMGGetGeofenceSetColor(unsigned long
setID, unsigned char* R, unsigned char* G, unsigned char*
B);

Retrieves the color within the perimeter of a geofence set, using R,G,B values.

LRESULT _PCMGWFN PCMGGetGeofenceSetBorderColor(unsigned
long setID, int*width, unsigned char* R, unsigned char* G,
unsigned char* B);

Retrieves the width and color of the perimeter of a set, using R,G,B values.

LRESULT _PCMGWFN PCMGSetGeofenceSetName(unsigned long
setID, const char FAR *pName);

Renames a geofence set using the geofence ID, pName = the new name.

LRESULT _PCMGWFN PCMGGetGeofenceSetName(unsigned long
setID, char FAR *pName, int bufLen);

Retrieves the name of a geofence set, identified by ID. bufLen = the length of the
provided buffer.

 PC*MILER|Mapping User’s Guide 50

LRESULT _PCMGWFN PCMGNumGeofenceSets();

Retrieves the number of existing geofence sets.

LRESULT _PCMGWFN PCMGGetGeofenceSet(unsigned long index,
char FAR *pName, unsigned long* pID);

Retrieves the name and set ID of an existing geofence set.

LRESULT _PCMGWFN PCMGNumGeofencesInSet(unsigned long
setID);

Retrieves the number of geofences in the specified set.

LRESULT _PCMGWFN PCMGGetGeofenceFromSet(unsigned long
setID, unsigned long fenceIndex, char FAR *pName, unsigned
long *pID);

Retrieves the specified geofence from a geofence set. fenceIndex = an index of
the geofences with the set.

3.6.2 State Highlight Functions

The state highlight functions let users highlight a state as a zone on the map.
There are Ex versions, for multiple map windows, of each of the functions below
(see section 3.8).

LRESULT _PCMGWFN PCMGAddStateHighlight(const char*
pStateAbbrev, unsigned char R, unsigned char G, unsigned
char B);

This function makes the specified state into a highlighted zone. pStateAbbrev is a
standard two-letter abbreviation as recognized by PC*MILER (if necessary, see
the PC*MILER User’s Guide or online Help for a complete list of abbreviations).
The color of the highlight is set using numeric R,G,B values.

LRESULT _PCMGWFN PCMGDeleteStateHighlight(const char*
pStateAbbrev);

Deletes an existing state highlight.

LRESULT _PCMGWFN PCMGGetStateHighlightColor(const char*
pStateAbbrev, unsigned char *R, unsigned char *G, unsigned
char *B);

Queries the color of an existing state highlight.

 Chapter 3: Programming With the DLL Interface 51

3.6.3 Street Highlight Functions

LRESULT _PCMGWFN PCMGAddStreetHighlight(const char*
streetName);

This function searches the map’s current projection rectangle for a specific street
based on the given name information. Any results found by the geocoding engine
will then be highlighted on the map. This highlight will be preserved until the user
chooses to remove it explicitly.

Each call to this API will generate one internal highlight record that tracks all of
the highlighted road segments found. Each record is indexed based on the input
string. If the same input is given multiple times, only one record will be
maintained. This feature will only work when licensed for PC*MILER|Streets
data and when the map is zoomed in far enough to view street level data.

Parameters:
streetName Name of the street to highlight. Text should not contain any city,

state/ZIP/SPLC information, just the street name information

Return Values:
-4 Street data not visible on the map, operation failed
<0 Internal error, operation failed
0 operation successful

LRESULT _PCMGWFN PCMGDeleteStreetHighlight(const char*
streetName);

This function removes a specific street highlight from the map. The input to this
function should match the input used when adding a street highlight to the map.
If it does not, the desired highlight might not be properly removed from the map.

Params:
streetName Name of the street to highlight

Return Values:
<0 Internal error, operation failed
0 operation successful

LRESULT _PCMGWFN PCMGDeleteAllStreetHighlights();

Removes all street highlights from the map.

Return Values:
<0 Internal error, operation failed
0 operation successful

 PC*MILER|Mapping User’s Guide 52

3.7 Management Functions

HMODULE PCMGGetDisplayModule(void);

This function returns a handle to PC*MILER. It is provided for backward
compatibility, and is not needed for 32-bit applications.
Note:This function is not part of the Excel interface.

HWND PCMGGetDisplayWindow(void);

This function returns a handle to PC*MILER for Window’s main window.
Note: This function is not part of the Excel interface.

void PCMGSetDisplayModule(HMODULE mod);

This function is used to give PC*MILER|Mapping the module handle for
PC*MILER. It is provided for backward compatibility, and is not needed for 32-
bit applications.

Do not use this unless you are an expert. Normally, you will not have to call this
function, as PC*MILER|Mapping searches for and finds PC*MILER when
function calls are made. This function is provided for unusual circumstances.
Note: This function is not part of the Excel interface.

void DECLARE PCMGSetDisplayWindow(HWND win);

This function is used to give PC*MILER|Mapping a handle to the main window
of PC*MILER. Do not use this unless you are an expert. Normally, you will not
have to call this function, as PC*MILER|Mapping searches for and finds
PC*MILER when PC*MILER|Mapping function calls are made. This function is
provided for extraordinary circumstances.
Note:This function is not part of the Excel interface.

void PCMGSetRedraw(BOOL onOff);

This function controls redrawing of the map. It is used when many pins, trips or
lines are being sent in a short period of time to prevent excessive redrawing of the
map. The strategy is to turn the redraw off, send many draw objects, then turn
redraw back on so that there will be a single redraw of the map.

In order for this function to work properly, you must first call
PCMGSetDisplayWindow()and pass the window handle that
PCMGCreateChildMap() returns. Code should be modified to do this:

HWND hwnd = PCMGCreateChildMap(parent)
PCMGSetDisplayWindow(hwnd)

 Chapter 3: Programming With the DLL Interface 53

Then PCMGSetRedraw() can be used as desired.

LRESULT _PCMGWFN PCMGTrafficStatus();

An API has been added to query the PC*MILER Traffic Features subscription
status. May return the following: -1 = an unlimited subscription that is not set to
expire; -2 = there is no subscription and Traffic Features are not accessible; or if
a number greater than or equal to 0 is returned, it is the number of days left until
the traffic subscription expires.

3.8 Multiple Map Windows (‘Ex’ Functions)

PC*MILER|Mapping now allows you to create multiple map windows. To create
and use more than one map window, you use an “Ex” version of the Mapping
DLL functions you are already familiar with.

To create an additional new map window, instead of using
PCMGCreateMapWindow or PCMGCreateMapChild you use
PCMGCreateMapWindowExor PCMGCreateMapChildEx. The difference
between the regular and the Ex version of these functions is that the regular
function returns the map window’s window handle, whereas the Ex version
returns a unique identifier that is used in all other Ex functions to determine which
map window should be manipulated.

Most PC*MILER|Mapping functions have an Ex version – (see the pcmgwinex.h
file in the PC*MILER|Mapping installation folder for a complete list of Ex
functions – the location is usually C:\ALK
Technologies\PCMILER28\Mapping\C_CPP). All Ex functions take one extra
argument which is a mapid.

In addition, one new Ex function – described below – has been added that enables
you to close a particular map window. Use PCMGCleanupMap() if you want
to close all open map windows while completely closing the Mapping application
(see section 3.3.1 for important information on opening and closing map
windows).

PCMGCloseMapEx (long mapid); .

Sample code for multiple map windows:

long mapid1 = PCMGCreateMapWindowEx(parentHWnd,
"MapWindow1", 500, 500);
long mapid2 = PCMGCreateMapWindowEx(parentHWnd,
"MapWindow2", 500, 500);

 PC*MILER|Mapping User’s Guide 54

long result;

//To zoom MapWindow1
result = PCMGZoomInEx(mapid1);

//To zoom MapWindow2
result = PCMGZoomInEx(mapid2);

//To plot a pin on MapWindow1
result = PCMGPlotPinEx((mapid1, "MyLayer", "P1", "1",
"Blue Truck", "Denver,CO", "OnTime");

 PC*MILER|Mapping User’s Guide 55

Using PC*MILER|Mappingwith Excel

If PC*MILER|Spreadsheets was purchased and installed, PC*MILER|Mapping
will include an Add-In for Excel 97 or higher. To complete the installation you
must enable the Add-In manually from within Excel, or configure Excel to
automatically load the Add-In each time you open the program.

After enabling the Add-In, you must start the PC*MILER|Mapping program
(double-click the PC*MILER|Mapping program icon). With the Mapping
program and Excel running simultaneously, you may plot icons, routes and lines
from Excel to the PC*MILER map. If you start the map window from your own
program, the first eight characters in the map window title must be “PC*MILER”
to connect to Excel.

NOTE: All the functions available through this Add-in are listed in the Excel
User Defined function category under the Insert|Function menu command.

4.1 Enablingthe Add-In Manually

For Microsoft Office 2003 (or older):

1. Open Excel.

2. In the top tool bar menu, select Tools>Add-Ins…>Browse.

3. Navigate to the folder where PC*MILER is installed and go to the Excel
folder. The default location of the Excel folder is …\ALK Technologies\
PCMILER28\Excel.

4. In the …\Excel folder, click on the Pcmgmp32.xla file then click OK.

5. In the Add-Ins dialog box, "PC*MILER|Mapping" will appear in the list of
products with a check next to it. This confirms that the Add-In is activated.

6. Click OK to continue. The setup is now complete.

The PC*MILER|Mapping functions are now ready to be used and will be
available every time you start Excel.

4 C
h

ap
te

r

 PC*MILER|Mapping User’s Guide 56

For Microsoft Office 2007 and 2010:

1. Open Excel.

2. Click on the Microsoft symbol in the upper left-hand corner of the
screen (Excel 2007), or click on the File menu (Excel 2010).

3. In the list that opens, click on the Excel Options button at the bottom
(Excel 2007) or the Options menu option (Excel 2010).

4. In the dialog box that opens, in the left-hand column menu click on Add-
Ins.

5. In the right-hand side of the dialog box, there's a drop down menu next to
Manage. Select Excel Add-Ins if it is not already selected, then click the
Go button to continue.

6. In the Add-Ins dialog box that opens, click Browse and navigate to the
folder where PC*MILER is installed and go to the Excel folder (the
default location is C:\ALK Technologies\PCMILER28\Excel).

7. In the …\Excel folder, click on the Pcmgmp32.xla file, then click OK.

8. In the Add-Ins dialog box, "PC*MILER|Mapping" will appear in the list of
products with a check next to it. This confirms that the Add-In is activated.

9. Click OK to continue.

The remaining steps below are necessary only if you wish to turn off security
warning messages for this spreadsheet.

10. Click on the Microsoft symbol in the upper left-hand corner of the
screen..

11. In the list that opens, at the bottom click on the Excel Options button.

12. In the dialog box that opens, in the left-hand column menu listing click on
Trust Center. Then click on the Trust Center Settings button on the right.

13. Click on Trusted Locations in the left-hand column menu.

14. Check if the location of the Excel folder from Step 6 is in the list of
trusted locations; if not, click Add New Location… .

15. Click Browse… and navigate to the location of the Excel folder.

16. Select “Subfolders of this location are also trusted”, then click OK.

17. In the Trust Center, check “Allow Trusted Locations on my network”,
then click OK. The setup is now complete.

The PC*MILER|Mapping functions are now ready to be used and will be
available every time you start Excel.

 Chapter 4: Using PC*MILER\Mapping With Excel 57

4.2 Disabling the Add-In Manually

1. Start Excel.

2. For Microsoft Office 2003:

Under the Tools menu, choose Add-Ins, then remove the check next to
“PC*MILER|Mapping” and click OK.

For Microsoft Office 2007:

Click the Microsoft Office button , click Excel Options, and then click
Add-Ins. In the Manage pick list at the bottom of the window that opens,
select Excel Add-Ins if it is not already selected. Then click “Go…” and
remove the check next to “PC*MILER| Mapping”, and click OK.

For Microsoft Office 2010:
Click File then Options to open the Excel Options dialog. On the left, click
Add-Ins. In the Manage pick list at the bottom of the window that opens,
select Excel Add-Ins if it is not already selected. Then click “Go…” and
remove the check next to “PC*MILER| Mapping”, and click OK.

The PC*MILER|Mapping functions are now removed. They will not be available
the next time you start Excel.

4.3 Enable/Disable Autoloading of PC*MILER|Mapping

To have PC*MILER|Mapping functions always available, copy the file
pcmgmp32.xla to the Excel startup directory. This directory is called xlstart and
is located in the directory where Excel is installed. For more information see
Excel Help under the search item “Startup Directory”.

To Disable Autoloading of PC*MILER|Mapping:

Remove the file pcmgmp32.xla from the Excel xlstart directory.

4.4 Functions Available Through the Excel Interface

The set of functions described in this section is available only through the
PC*MILER|Mapping Microsoft® Excel interface. There are two ways to use
PC*MILER|Mapping formulas in Excel: either type them directly into a cell or
use the Formula Wizard (see the Excel Help search topic “Formulas, Entering”).
The sections below list the Excel functions, and provide descriptions of their
specific tasks.

 PC*MILER|Mapping User’s Guide 58

NOTE: Any cells in Excel that contain postal codes must be formatted properly.
In the Excel Format menu choose Cells… > Number, then under “Category”
highlight “Special > Zip Code” and click OK. If the formatting is not correct,
preceding zeros may be dropped – for example, the postal code “08540” would
become “8540”.

4.4.1 Plotting an Icon

You can either plot a set of pins without naming each one, using PlotPin(), or you
can give each one an identifier which will allow you to modify its settings using
PlotPinID(). The prototype of the function PlotPin is:

PlotPin (icon, location [, label])

PlotPindraws an icon on the map at the point specified by location. Icon may be
one of the icons provided with PC*MILER|Mapping, or the filename of a .BMP
file. Location is a PC*MILER place name, postal code, SPLC (add-on data
module), Canadian Postal Code (add-on data module), lat/long coordinate, or a
custom place name created in PC*MILER. If you are using PC*MILER|Streets, a
street address may be added, separated from the place name by a semicolon; for
example, “kingston, nj; 16 laurel avenue”. Label is an optional string which
appears under the icon.

Icons plotted with PlotPin are deleted using the function DeletePins. The
prototype of the function PlotPinID() is:

PlotPinID (ID, icon, location [, label])

PlotPinIDdraws an icon, identified by ID, on the map at the point specified by
location. ID can be any string or other unique identifier. Icon may be one of the
icons provided with PC*MILER|Mapping, or the filename of a .BMP file.
Location is a PC*MILER place name, postal code, SPLC (add-on data module),
Canadian Postal Code (add-on data module), lat/long coordinate, or a custom
place name created in PC*MILER. If you are using PC*MILER|Streets, a street
address may be added, separated from the place name by a semicolon; for
example, “kingston, nj; 16 laurel avenue”. Label is a string which appears
under the icon and is optional.

Icons plotted with PlotPinID are NOT deleted using the function DeletePins.
You must delete them individually using DeletePinID.

 Chapter 4: Using PC*MILER\Mapping With Excel 59

4.4.2 PC*MILER|Mapping Icons

A PC*MILER|Mapping icon is a text string composed of two parts: type and
color separated by a space. In addition to the icons pictured below are a Box and
Circle. If you plot a Box or Circle, you can add a size argument (eg. ‘Red Box
10’) which sets the box’s size in pixels.

You can also plot icons of your own design. To do so, pass the complete path to a
.BMP (bitmap format) file to the PlotPin or PlotPinID functions.

For example, if you pass the path ‘c:\ALK Technologies\PCMILER28\icon.bmp’
(a sample icon included in your installation) to either function, you’ll see a new
bitmap with the word ‘ICON’ on it displayed on your map. You can generate your
own bitmaps using the PaintBrush program included with Windows.

NOTE:Size the canvas first before beginning to paint your bitmap. Bitmaps must
be in .BMP format to load.

Example: To plot an icon without a label:

Example: To plot an icon without a label, using a street address (only available
with PC*MILER| Streets installed):

 PC*MILER|Mapping User’s Guide 60

Example: To plot a user defined icon at a LatLong position, with a label:

Available Bitmaps:

 Warehouse Large Truck Trailer

 Tag

Large Pushpin Large Package

 Truck Large Warehouse Pushpin

 Large Tag Package

Icon Colors:
ICON COLORS EXAMPLE

Warehouse Red, Green, Blue, Yellow, Pink, Darkblue,
DarkYellow

Green Warehouse

Tag Yellow, Green, Pink Green Tag
Trailer Red, Yellow, Green, Blue Green Trailer
Truck Red, Yellow, Green, Blue Green Truck
Pushpin Yellow, Green, Blue, Purple Green Pushpin
Package DarkYellow DarkYellow Package
LTruck Red, Yellow, Green, Blue Green LTruck
LPushpin Yellow, Green, Blue, Purple Green LPushpin
LPackage DarkYellow DarkYellow LPackage
LWarehouse Red, Green, Blue, Yellow, Pink, DarkBlue,

DarkYellow
DarkYellow
LWarehouse

LTag Yellow, Green, Pink Yellow LTag
Box Blue, DarkBlue, Green, DarkGreen,

Yellow, DarkYellow, Gray, DarkGray, Red,
White

DarkBlue Box
Red Box 5

Circle Blue, DarkBlue, Green, DarkGreen,
Yellow, DarkYellow, Gray, DarkGray, Red,
White

Red Circle
Blue Circle 4

 Chapter 4: Using PC*MILER\Mapping With Excel 61

4.4.3 Plotting a Route Between Two Points

You can either plot a set of trips without naming each one, using PlotTrip(), or
you can give each one an identifier which will allow you to modify its settings
using PlotTripID(). The prototype for the function PlotTrip is:

PlotTrip (origin, destination [, style]);

PlotTripruns a route between origin and destination from the PC*MILER
database and draws the route on the map. Origin and destination may be
designated as PC*MILER place names, postal codes, six digit Canadian postal
codes (available as an add-on data module), SPLC codes (available as an add-on
data module), latitude/longitude coordinates, or custom place names created in
PC*MILER. If you are using PC*MILER|Streets, a street address may be added,
separated from the place name by a semicolon; for example, “kingston, nj; 16
laurel avenue”.

NOTE for PC*MILER|Streets Users:When stops are city names or postal
codes, by default “Highway Only” routing is used. See the PC*MILER User’s
Guide for a description of this option, and Appendix B in this guide to change the
default.

Style is a text string and is composed of two parts: color and width (in pixels)
separated by a space. It is optional. The colors available are the same as the ones
listed for Box and Circle pins above. The default color is Green and the default
width is 5.

Routes plotted with PlotTrip are deleted using the function DeleteTrips.

The prototype for the function PlotTripID is:

PlotTripID (ID, origin, destination [, style]);

PlotTripIDruns a route, identified by ID, between origin and destination from
the PC*MILER database and draws the route on the map. ID can be any string or
other unique identifier. Origin and destination may be designated as PC*MILER
place names, postal codes, six digit Canadian Postal Codes (available as an add-
on data module), SPLC codes (available as an add-on data module),
latitude/longitude coordinates, or custom place names created in PC*MILER. If
you are using PC*MILER|Streets, a street address may be added, separated from
the place name by a semicolon; for example, “kingston, nj; 16 laurel avenue”.

Style is a text string and is composed of two parts: color and width (in pixels)
separated by a space. It is optional. The colors available are the same as the ones
listed for Box and Circle pins above. The default color is Green and the default
width is 5.

 PC*MILER|Mapping User’s Guide 62

Trips plotted with PlotTripID are NOT deleted using the function DeleteTrips.
You must delete them individually using DeleteTripID.

Example: To plot a simple trip:

Example: To plot a simple trip with a street address (PC*MILER|Streets only):

Example: To plot a route with a custom line style:

 Chapter 4: Using PC*MILER\Mapping With Excel 63

4.4.4 Plotting a Line Between Two Points

You can either plot a set of lines without naming each one, using PlotLine(), or
you can give each one an identifier which will allow you to modify its settings
using PlotLineID().

The prototype for the function PlotLine is:

PlotLine (Origin, Destination [, style]);

PlotLinedraws a line between origin and destination on the map. Origin and
destination may be designated as PC*MILER place names, postal codes, six digit
Canadian Postal Codes (available as an add-on data module), SPLC codes
(available as an add-on data module), latitude/longitude coordinates, or custom
place names created in PC*MILER. If you are using PC*MILER|Streets, a street
address may be added, separated from the place name by a semicolon; for
example, “kingston, nj; 16 laurel avenue”.

Style is a text string and is composed of two parts: color and width (in pixels)
separated by a space. It is optional. The colors available are the same as the ones
listed for Box and Circle pins above. The default color is Blue and the default
width is 4.

Lines plotted with PlotLine are deleted using the function DeleteLines.
The prototype for the function PlotLineID is:

PlotLineID (ID, Origin, Destination [, style]);

PlotLineIDdraws a line, identified by ID, between origin and destination on the
map. ID can be any string or other unique identifier. Origin and destination may
be designated as PC*MILER place names, postal codes, six digit Canadian Postal
Codes (available as an add-on data module), SPLC codes (available as an add-on
data module), lat/long coordinates, or custom place names created in PC*MILER.
If you are using PC*MILER|Streets, a street address may be added, separated
from the place name by a semicolon; for example, “kingston, nj; 16 laurel
avenue”.

 Style is a text string and is composed of two parts: color and width (in pixels)
separated by a space. It is optional. The colors available are the same as the ones
listed for Box and Circle pins above. The default color is Blue and the default
width is 4.

Lines plotted with PlotLineID are NOT deleted using the function DeleteLines.
You must delete them individually using DeleteLineID.

 PC*MILER|Mapping User’s Guide 64

Example: To plot a simple line:

Example: To plot a simple line with a local street address (available with
PC*MILER|Streets only):

Example: To plot a line with lat/long and specified style:

 Chapter 4: Using PC*MILER\Mapping With Excel 65

4.4.5 Deleting Icons

The function DeletePins deletes all pins on the map layer, the prototype is:

DeletePins();

Use the function DeletePinID to delete individual pins, the prototype is:

DeletePinID(PinID);

Example: To delete all the icons that were drawn using PlotPinID:

 PC*MILER|Mapping User’s Guide 66

4.4.6 Deleting Lines

DeleteLines deletes all lines drawn on the map layer, the prototype is:

DeleteLines();

Use the function DeleteLineID to delete individual lines, the prototype is:

DeleteLineID(LineID);

Example: To delete all the lines that were drawn using PlotLine:

 Chapter 4: Using PC*MILER\Mapping With Excel 67

4.4.7 Deleting Trips

DeleteTrips deletes all trips drawn on the map layer, the prototype is:

DeleteTrips();

Use the function DeleteTripID to delete individual trips:

DeleteTripID(TripID);

Example: To delete all the lines that were drawn using PlotTrip:

 PC*MILER|Mapping User’s Guide 68

4.4.8 PCMG Functions Available in Excel

In addition to the functions described in sections 4.4.1 – 4.4.7, there are several
other PC*MILER|Mapping functions that are now available for use in Excel.
These functions start with the prefix “PCMG”, and include additional arguments
for those users who would like to have expanded capability in Excel. You will
see them listed under User Defined in the list of available functions in the Insert
Function dialog. Please refer to Chapter 3 for detailed descriptions of these
functions.

PCMGPlotLine
PCMGDeleteLine

PCMGPlotPin
PCMGFramePin
PCMGDeletePin

PCMGShowPinmap
PCMGFramePinmap
PCMGDeletePinmap

PCMGPlotTrip
PCMGDeleteTrip

PCMGSetRedraw

PCMGSetInfoLabels

 PC*MILER|Mapping User’s Guide 69

Using the PC*MILER|Mapping
COM Server

The PC*MILER|Mapping COM Server can be called from Active Server Pages
(ASP), Visual Basic, and all of the other OLE-compatible languages. Examples
of calling from Active Server Pages (ASP) using VBScript is included in the
installation.

The PC*MILER|Mapping COM Server must be registered before using. If you
have not registered the component during the installation, register the DLL by
calling Regsvr32 pcmgole.dll.

The PC*MILER|Mapping COM Server provides two main COM objects: the
PCMMapMgr object and the PCMMapobject.

5.1 Summary of the Objects

PCMMapMgr provides a connection to the PC*MILER|Mapping DLL, and
allows you to create multiple map windows. You need to create an instance of the
PCMMapMgr object first in order to use PC*MILER|Mapping COM Server.
Once an instance of the PCMMapMgr object is created, you can create a PCMMap
object.

Methods:

 Use the IsOK method to make sure there were no
errors creating the PCMMapMgr object.

 Use the CreateMap method to create a PCMMap
object.

Call the CreateObject function with the object’s ProgID.

Dim mapMgrObj as Object
Dim ret
Set mapMgrObj =
CreateObject("Pcmgole.PCMMapMgr")
ret = mapMgrObj.IsOK
If (ret <= 0) Then
 //Error handling

The version-independent ProgID for the PC*MILER|Mapping OLE is
“Pcmgole.PCMMapMgr”.

5 C
h

ap
te

r

 PC*MILER|Mapping User’s Guide 70

The PCMMap is created each time a map is to be created and all map
functionality is accessed through this object. The PCMMap object is not the same
as the map window you create using the PC*MILER|Mapping function
PCMGCreateMapWindow. In order to draw a PC*MILER map in any windows
object’s client area, you need to call the Paint method when responding to a
WM_PAINT event. If you are using it on the web, you do not need to call the
Paint method. Instead use the CreateGif method to create a .gif image of the map.

NOTE:It is the user’s responsibility to delete all objects that have been created.

PCMMapSettings can be used to get the map settings. It returns the map’s
center, zoom level and the detail level. The syntax is:

mapSettingsObj = mapMgrObj.MapSettings

The PCMMapSettings object is useful to recreate the map if you are using it in a
stateless web application. Before destroying the PCMMap object, call
MapSettings to save the map’s center, zoom level and the detail level. Then
next time after creating a new PCMMap object, call SetMapSettings with the
previously saved values to recreate the map that was destroyed. Any user-created
layers such as trips, pins, lines and labels will not be recreated. Users need to call
appropriate functions to create these layers again.

MapMgr

Map

MapSettings

LEGEND

Object =
Method or Property =

Figure 1: RELATIONSHIPS OF OBJECTS
 — How to get from one object to another

 Chapter 5: Using the PC*MILER|Mapping COM Server 71

Objects, properties and methods listed

PCMMapMgr OBJECT PROPERTIES AND METHODS

PROPERTIES:
IsOK BOOL (read)
ErrorCode long (read)

METHODS:

 CreateMap

PCMMap OBJECT PROPERTIES AND METHODS

PROPERTIES:
 MapID long (read)
 MapSettings long (read)
 NumFrameAreas long (read)

METHODS:
 CreateGifFile
 CreateGifBytes
 CopyToClipboard
 GetFrameArea
 FrameArea
 SetGifDirectory
 ZoomIn
 ZoomOut
 ZoomTo
 ZoomToPlace
 GetGifLocationXY
 MoreDetail
 LessDetail
 Pan
 SetMapSettings
 SetScaleUnits
 ToggleRoadLegend
 ToggleRouteLegend
 ToggleScaleLegend
 UpdateRoute
 UpdateRoute2
 FrameRoute
 Paint
 Print
 PlotPin
 SetUseOverlapIcon
 SetOverlapIconName

 PC*MILER|Mapping User’s Guide 72

 FramePin
 FramePinMap
 DeletePin
 PlotLabel
 DeleteLabel
 PlotLine
 DeleteLine
 PlotTrip
 FrameTrip
 DeleteTrip
 DeletePinMap
 ShowPinMap
 ShowLayer

PCMMapSettings OBJECT PROPERTIES

PROPERTIES:
 x long (read)

y long (read)
xzoom long (read)
yzoom long (read)
detail long (read)

 Chapter 5: Using the PC*MILER|Mapping COM Server 73

5.2 PCMMapMgr PROPERTIES AND METHODS

IsOK property (read)

Description:
 Checks that the PCMMapMgr object was created with no errors.

Visual Basic Syntax:
 Ret = mapMgrObj.isOK

Remarks:
Returns S_OK if the object is in a valid state, S_FALSE if not.

ErrorCode property (read)

Description:
 Returns the PCMMapMgr object error code.

Visual Basic Syntax:
 mapMgrErrorCode = mapMgrObj.ErrorCode

Part Type Description
mapMgrErrorCode long mapMgrObj error code

Remarks:
 Returns pcmgmp32.dll or pmwscomm.dll specific error codes.

CreateMap method

Description:
 Returns a PCMMap object.

Visual Basic Syntax:
 mapObj = mapMgrObj.CreateMap
Com – Interface:
 HRESULT CreateMap([out, retval] IPCMMap** mapObj);

Part Type Description
mapObj object PCMMap object

Remarks:
 Returns the map object.

 PC*MILER|Mapping User’s Guide 74

5.3 PCMMap PROPERTIES AND METHODS

MapID property (read)

Description:
 Returns a unique id for each map created by the CreateMap method.

Visual Basic Syntax:
 id = mapObj.MapID

Part Type Description
id long the unique id for this map

Remarks:
 Returns -1 if errors occurred on creation.

MapSettings property (read)

Description:

Returns a PCMMapSettings object. This object can be used to get the
map settings. It returns the map’s center, zoom level and the detail level.

Visual Basic Syntax:
 mapSettingsObj = mapMgrObj.MapSettings

Part Type Description
mapSettingsObj object map settings object

Remarks:

PCMMapSettings object is useful to recreate the map if you are using it
in a stateless web application. Before destroying the PCMMap object, call
MapSettings to save the map’s center, zoom level and the detail level.
Then next time after creating a new PCMMap object, call
SetMapSettings with the previously saved values to recreate the map
that was destroyed. Any user-created layers such as trips, pins, lines and
labels will not be recreated. Users need to call appropriate functions to
create these layers again.

 Chapter 5: Using the PC*MILER|Mapping COM Server 75

NumFrameAreas property (read)

Description:
 Returns the number of frameable areas available through this map.

Visual Basic Syntax:
 num = mapObj.NumFrameAreas

Part Type Description
num long the number of frameable areas

Remarks:
 PCMGNumFrameAreas

CopyToClipboard method

Description:
 Places the current gif image on the system Clipboard.

Visual Basic Syntax:
 mapObj. CopyToClipboard (hdc)
Com – Interface:
 HRESULT CopyToClipboard([in] long hdc);

Part Type Description
hdc long Handle to the device context

CreateGifFile method

Description:
 Creates a .gif file of the map on disk.

Visual Basic Syntax:
 mapObj.CreateGifFile(width, height, gifId, option)
Com – Interface:

HRESULT CreateGifFile([in] long width, [in] long height, BSTR gifId,
[in] long option);

Part Type Description
width long desired width of the .gif in pixels
height long desired height of the .gif in pixels
gifId string filename of the .gif (may have full path)
option long desired scale legend option

 PC*MILER|Mapping User’s Guide 76

Remarks:

Returns 1 on success. The following constants respresent the five possible
options for positioning the legend:

0 NO_SCALE
1 TOP_LEFT_SCALE
2 TOP_RIGHT_SCALE
3 BOTTOM_LEFT_SCALE
4 BOTTOM_RIGHT_SCALE

BOTTOM_RIGHT_SCALE is the default position.

CreateGifBytes method

Description:
 Creates a gif image in memory.

Visual Basic Syntax:
 mapObj.CreateGifBytes(width, height, option, buffer)
Com – Interface:

HRESULT CreateGifBytes([in] long width, [in] long height,[in] long
option, VARIANT *buffer);

Part Type Description
width long desired width of the gif image in pixels
height long desired height of the gif image in pixels
option long desired scale legend option
buffer VARIANT buffer

Remarks:

Returns 1 on success. The following constants respresent the five possible
options for positioning the legend:

0 NO_SCALE
1 TOP_LEFT_SCALE
2 TOP_RIGHT_SCALE
3 BOTTOM_LEFT_SCALE
4 BOTTOM_RIGHT_SCALE

BOTTOM_RIGHT_SCALE is the default position.

 Chapter 5: Using the PC*MILER|Mapping COM Server 77

DeleteLabel method

Description:
 Deletes the label identified by id in the layer layerid.

Visual Basic Syntax:
 mapObj.DeleteLabel(layerid, id)
Com – Interface:
 HRESULT DeleteLabel([in] BSTR, [in] BSTR);

Part Type Description
layerid string id of the layer containing the label to be deleted
id string unique identifier of the label

DeleteLine method

Description:
 Deletes the line identified by id in the layer layerid.

Visual Basic Syntax:
 mapObj.DeleteLine(layerid, id)
Com – Interface:
 HRESULT DeleteLine([in] BSTR, [in] BSTR);

Part Type Description
layerid string id of the layer containing the line to be deleted
id string unique identifier of line

Remarks:

Refer to section 3.5of this manual or Plot Functions in the Index or
Contents of PC*MILER|Mapping Help.

DeletePin method

Description:
 Deletes the pin identified by id in the layer layerid.

Visual Basic Syntax:
 mapObj.DeletePin(layerid, id)
Com – Interface:
 HRESULT DeletePin([in] BSTR, [in] BSTR);

 PC*MILER|Mapping User’s Guide 78

Part Type Description
layerid string layerid of the layer containing the pin to be deleted
id string id of the pin to be deleted

Remarks:

Refer to section 3.5.1, Pin and Label Functions or Plot Functions in the
Index or Contents of PC*MILER|Mapping Help.

DeletePinMap method

Description:

Removes the Pin layer identified by layerid from the map.

Visual Basic Syntax:
 mapObj.DeletePinMap(layerid)
Com – Interface:
 HRESULT DeletePinMap([in] BSTR);

Part Type Description
layerid string id of the layer to be deleted

Remarks:

Use this function to remove an entire layer. All objects in the layer are
deleted. This function can be used to remove Pin layers, Trip layers, Line
layers and Label layers.

DeleteTrip method

Description:
 Deletes the trip identified by id in the layer layerid.

Visual Basic Syntax:
 mapObj.DeleteTrip(layerid, id)
Com – Interface:
 HRESULT DeleteTrip([in] BSTR, [in] BSTR);

Part Type Description
layerid string id of the layer containing the trip to be removed
id string id of the trip to be removed

Remarks:

Refer to section 3.5.6, Trip and Line Functions or Plot Functions in the
Index or Contents of PC*MILER|Mapping Help.

 Chapter 5: Using the PC*MILER|Mapping COM Server 79

FrameArea method

Description:
 Frames the area specified by the string parameter.

Visual Basic Syntax:
 mapObj.FrameArea(area)
Com – Interface:
 HRESULT FrameArea(BSTR areaName);

Part Type Description
area string the string name of the area

Remarks:
 PCMGFrameArea

FramePin method

Description:
 Zooms the map to center the pin specified by layerid and id.

Visual Basic Syntax:
 mapObj.FramePin(layerid, id)
Com – Interface:
 HRESULT FramePin(layerid, id);

Part Type Description
layerid string layerid of the layer containing the pin to be framed
id string id of the pin to be framed

Remarks:

Refer to section 3.5.1, Pin and Label Functions or Plot Functions in the
Index or Contents of PC*MILER|Mapping Help.

FramePinMap method

Description:
 Zooms the map to include all of the pins in the pinmap layer layerid.

Visual Basic Syntax:
 mapObj.FramePinMap(layerid)
Com – Interface:
 HRESULT FramePinMap([in] BSTR);

 PC*MILER|Mapping User’s Guide 80

Part Type Description
layerid string id of the layer containing the pins to be framed

Remarks:

Refer to section 3.5.7, Pinmap Functions or Plot Functions in the Index or
Contents of PC*MILER|Mapping Help.

FrameRoute method

Description:
 Frames the trip represented by the trip ID.

Visual Basic Syntax:
 mapObj.FrameRoute(tripID)
Com – Interface:
 HRESULT FrameRoute([in] long tripID);

Part Type Description
tripID long trip id

Remarks:

The user must have the PC*MILER|Connect object to display trip
information on the map.

FrameTrip method

Description:
 Frames the route plotted by PlotTrip.

Visual Basic Syntax:
 mapObj.FrameTrip(layered, id)
Com – Interface:
 HRESULT FrameTrip([in] BSTR, [in] BSTR);

Part Type Description
layerid string should match layered parameter in PlotTrip call
id string should match id parameter in PlotTrip call

Remarks:
 PlotTrip

 Chapter 5: Using the PC*MILER|Mapping COM Server 81

GetFrameArea method

Description:

Gets the string name of the frameable area indexed by which. Which must
be 0 to NumFrameAreas-1.

Visual Basic Syntax:
 area = mapObj.GetFrameArea(which)
Com – Interface:
 HRESULT GetFrameArea([in] long which, [out, retval] BSTR* area);

Part Type Description
area string the string name of the area
which long index of the frameable area

Remarks:
 PCMGGetFrameArea

LessDetail method

Description:

Decreases the number of roads, road names and city names displayed.
Each call to the function decreases the level of detail by the same amount
as zooming out a level. The function may be called multiple times to
dramatically decrease the level of detail.

Visual Basic Syntax:
 mapObj.LessDetail
Com – Interface:
 HRESULT LessDetail();

Remarks:
 PCMGRemoveDetail

MoreDetail method

Description:

Increases the number of roads, road names and city names displayed. Each
call to the function increases the level of detail by the same amount as
zooming in a level. The function may be called multiple times to
dramatically increase the level of detail.

 PC*MILER|Mapping User’s Guide 82

Visual Basic Syntax:
 mapObj.MoreDetail
Com – Interface:
 HRESULT MoreDetail();

Remarks:
 PCMGAddDetail

Paint method

Description:

Draws the map. This function should be used when responding to a
WM_PAINT message, usually in your OnPaint message-handler member
function.

Visual Basic Syntax:
 mapObj.Paint(hdc, hwnd)
Com – Interface:
 HRESULT Paint([in] long hdc, [in] long hwnd);

Part Type Description
Hdc long Handle to the device context to draw in.
Hwnd long Handle to the window to be painted.

Remarks:
 Returns S_OK if the function was successful , S_FALSE if not.

Pan method

Description:

Moves the viewable area of the map in one of eight directions (N, S, E, W,
NE, NW, SE, SW).

Visual Basic Syntax:
 mapObj.Pan(dir, factor)
Com – Interface:
 HRESULT Pan([in] long dir, [in] double factor);

Part Type Description
dir long direction to pan
factor double distance factor

Remarks:

The following constants represent the eight possible directions for
panning:

 Chapter 5: Using the PC*MILER|Mapping COM Server 83

 NORTH 0
 NORTHEAST 1
 EAST 2
 SOUTHEAST 3
 SOUTH 4
 SOUTHWEST 5
 WEST 6
 NORTHWEST 7

The distance factor determines how far on the map the viewable area
moves and represents the map size in tenths. A factor of 0.0 does not move
the viewable area and a factor of 1.0 moves the viewable area exactly one
map size. That is, panning with a factor of 1.0 will completely move the
area so no locations in the previous view are in the subsequent view. A
factor of 0.5 will move the view ½ of the map’s area in the direction
specified.

PlotLabel method

Description:
 Draws a label on the map.

Visual Basic Syntax:
 mapObj.PlotLabel(layerid, id, importance, style, locations, label)
Com – Interface:

HRESULT PlotLabel([in] BSTR, [in] BSTR, [in] BSTR, [in] BSTR, [in]
BSTR, [in] BSTR);

Part Type Description
layerid string id of the layer to which the new label will be added
id string unique identifier of new label
importance string level of importance (determines at what level of
 detail the label will be drawn);1 to 6, with 1 being
 most important
style string which color and line width to use
locations string location of label (PC*MILER place names only)
label string text of label

 PC*MILER|Mapping User’s Guide 84

PlotLine method

Description:
 Draws a line on the map.

Visual Basic Syntax:
 mapObj.PlotLine(layerid, id, importance, style, locations)
Com – Interface:

HRESULT PlotLine([in] BSTR, [in] BSTR, [in] BSTR, [in] BSTR, [in]
BSTR);

Part Type Description
layerid string id of the layer to which the new line will be added
id string unique identifier of new line
importance string level of importance (determines at what level of
 detail the line will be drawn);1 to 6, with 1 being
 most important
style string which color and line width to use
locations string list of stops that make up the line (PC*MILER
 place names only)

Remarks:

Refer to section 3.5.6, Trip and Line Functions or Plot Functions in the
Index or Contents of PC*MILER|Mapping Help.

PlotPin method

Description:
 Draws an icon on the map.

Visual Basic Syntax:
 mapObj.PlotPin(layerid, id, importance, symbol, location, labels)
Com – Interface:

HRESULT PlotPin([in] BSTR, [in] BSTR, [in] BSTR, [in] BSTR, [in]
BSTR, [in] BSTR);

Part Type Description
layerid string layer that contains the pin (will be created if none
 exists)
id string unique identifier for the pin (pin will be created if
 none exists)
importance string level of importance (determines at what level of
 detail pin will be drawn); 1 to 6, with 1 being most
 important

 Chapter 5: Using the PC*MILER|Mapping COM Server 85

symbol string .bmp file name, or PCMGS symbol
location string ZIP or postal code, city/state, Canadian postal code,
 SPLC code, or lat/long
labels string (optional) list of up to eight values

Remarks:

Refer to section 3.5.1, Pin and Label Functions or Plot Functions in the
Index or Contents of PC*MILER|Mapping Help.

SetUseOverlapIcon method

Description:
 Sets overlapping mode for pin layer

Visual Basic Syntax:
 mapObj.SetUseOverlapIcon(layerid, on_off)
Com – Interface:
 HRESULT SetUseOverlapIcon ([in] BSTR, [in] BOOL);

Part Type Description
layerid string layer that contains the pin (will be created if none
 exists)
on_off boolean

Remarks:

Refer to section 3.4.8, Layer Control Functions or Layer Control
Functions in the Index of PC*MILER|Mapping Help.

SetOverlapIconName method

Description:
 Sets overlapping icon for pin layer

Visual Basic Syntax:
 mapObj.SetOverlapIconName(layerid, icon)
Com – Interface:
 HRESULT SetOverlapIconName ([in] BSTR, [in] BSTR);

Part Type Description
layerid string layer that contains the pin (will be created if none exists)
icon string .bmp file name, or PCMGS symbol

Remarks:
Refer to section 3.4.8, Layer Control Functions or Layer Control Functions in the
Index of PC*MILER|Mapping Help.

 PC*MILER|Mapping User’s Guide 86

PlotTrip method

Description:
 Draws a route’s trip over the PC*MILER network on the map.

Visual Basic Syntax:
 mapObj.PlotTrip(layerid, id, importance, style, locations, options)
Com – Interface:

HRESULT PlotTrip([in] BSTR, [in] BSTR, [in] BSTR, [in] BSTR, [in]
BSTR, [in] BSTR);

Part Type Description
layerid string the feature layer to which the new trip will be added
id string unique identifier of the trip
importance string level of importance (determines at what level of
 detail the trip will be drawn); 1 to 6, with 1 being
 most important
style string which line color and width to use
locations string list of stops that make up the trip (PC*MILER place
 names only)
options string list of PC*MILER routing options to use when
 calculating the trip

Remarks:

Refer to section 3.5.6, Trip and Line Functions or Plot Functions in the
Index or Contents of Mapping Help.

Print method

Description:
 Prints the map to a printer device.

Visual Basic Syntax:
 mapObj.Print (hdc, title)
Com – Interface:
 HRESULT Print ([in] long hdc, [in] BSTR, title);

Part Type Description
hdc long handle to the printer device context.
title string title for the printed map.

Remarks:
 Returns S_OK if the function was successful , S_FALSE if not.

 Chapter 5: Using the PC*MILER|Mapping COM Server 87

SetGifDirectory method

Description:

Sets the default directory or folder to store .gif images created by
CreateGifFile.

Visual Basic Syntax:
 mapObj.SetGifDirectory(dir)
Com – Interface:
 HRESULT SetGifDirectory([in] BSTR);

Part Type Description
dir string name of the directory or folder.

Remarks:
 Ignore this if you are always using a full path in CreateGifFile.

SetMapSettings method

Description:
 Set the mapping settings for this map.

Visual Basic Syntax:
 mapMgrObj.SetMapSettings(x, y, xzoom, yzoom, detail)
Com – Interface:

HRESULT SetMapSettings([in] long x, [in] long y, [in] long xzoom, [in]
long yzoom, [in] long detail);

Part Type Description
x long x coordinate of the map’s center.
y long y coordinate of the map’s center.
xzoom long xzoom level
yzoom long yzoom level
detail long detail level

 PC*MILER|Mapping User’s Guide 88

SetScaleUnits method

Description:
 Set scale units of the map to miles or kilometers.

Visual Basic Syntax:
 mapObj.SetScaleUnits(units)
Com – Interface:
 HRESULT SetScaleUnits([in] long units);

Part Type Description
units long miles or kilometers

Remarks:
 Sets the maps units to either miles (0) or kilometers(1).

ToggleScaleLegend method

Description:
 Sets the scale legend visibility.

Visual Basic Syntax:
 mapObj.ToggleScaleLegend(on_off)
Com – Interface:
 HRESULT ToggleScaleLegend([in] int value);

Part Type Description
Value int set to 0 to hide the legend, set to nonzero to show
 the legend

ToggleRoadLegend method

Description:
 Sets the road legend visibility.

Visual Basic Syntax:
 mapObj.ToggleRoadLegend(on_off)
Com – Interface:
 HRESULT ToggleRoadLegend([in] int value);

Part Type Description
Value int set to 0 to hide the legend, set to nonzero to show
 the legend

 Chapter 5: Using the PC*MILER|Mapping COM Server 89

ToggleRouteLegend method

Description:
 Sets the route legend visibility.

Visual Basic Syntax:
 mapObj.ToggleRouteLegend(on_off)
Com – Interface:
 HRESULT ToggleRouteLegend([in] int value);

Part Type Description
Value int set to 0 to hide the legend, set to nonzero to show
 the legend

ShowLayer method

Description:
 Use this function to show or hide the layer identified by layerid.

Visual Basic Syntax:
 mapObj. ShowLayer(layerid, onoff)
Com – Interface:
 HRESULT ShowLayer([in] BSTR, [in] BOOL);

Part Type Description
layerid string layer name
onoff BOOL show if true, or hide if false

Remarks:

This function can be used to show or hide Trip layers, Line layers, Label
layers, and any PC*MILER layers. Use True to turn the layer on, use
False to turn the layer off.

ShowPinMap method

Description:
 Use this function to show or hide the Pin layer identified by layerid.

Visual Basic Syntax:
 mapObj.ShowPinMap(layerid, onoff)
Com – Interface:
 HRESULT ShowPinMap([in] BSTR, [in] BOOL);

 PC*MILER|Mapping User’s Guide 90

Part Type Description
layerid string layer name
onoff BOOL true or false

Remarks:

This function can be used to show or hide only pin layers (layers will not
be deleted). Use True to turn the layer on, False to turn the layer off.
Refer to section 3.5.7, Pinmap Functions or Pinmap Functions (under Plot
Functions) in the Index or Contents of Mapping Help.

UpdateRoute method

Description:

Updates the map with information in the trip represented by the trip ID.

Visual Basic Syntax:
 mapObj.UpdateRoute(tripID)
Com – Interface:
 HRESULT UpdateRoute([in] long tripID);

Part Type Description
tripID long trip id

Remarks:
The user must have the PC*MILER|Connect object to display trip
information on the map.

UpdateRoute2 method

Description:

Updates the map with information in the trip represented by the trip ID
and drawn with style represented by the Style.

Visual Basic Syntax:
 mapObj.UpdateRoute2(tripID, Style)
Com – Interface:
 HRESULT UpdateRoute2([in] tripID, [in] Style);

Part Type Description
tripID long trip id
Style string style (line width and color, separated by vertical
 bar, for example “red|5”)
Remarks:

This function is the extension of UpdateRoute. See section 4.4.3, Plotting
a Route Between Two Points for a description of style variable.

 Chapter 5: Using the PC*MILER|Mapping COM Server 91

ZoomIn method

Description:

Zooms in one level. Equivalent to double-clicking with the left mouse.
Will cause more detail to appear on the map.

Visual Basic Syntax:
 mapObj.ZoomIn
Com – Interface:
 HRESULT ZoomIn();

Remarks:
 PCMGZoomIn

ZoomOut method

Description:
 Zooms out one level. Will cause less detail to appear on the map.

Visual Basic Syntax:
 mapObj.ZoomOut
Com – Interface:
 HRESULT ZoomOut();

Remarks:
 PCMGZoomOut

ZoomTo method

Description:
 Zooms to a rectangle on the map.

Visual Basic Syntax:
 mapObj.ZoomTo(left, top, right, bottom)
Com – Interface:

HRESULT ZoomTo([in] long left, [in] long top, [in] long right, [in] long
bottom);

Part Type Description
left long left of the rectangle
top long top of the rectangle
right long right of the rectangle
bottom long bottom of the rectangle

 PC*MILER|Mapping User’s Guide 92

ZoomToPlace method

Description:
 Zooms to a place on the map.

Visual Basic Syntax:
 mapObj.ZoomToPlace(placename)
Com – Interface:
 HRESULT ZoomToPlace([in] BSTR);

Part Type Description
placename string name of the place

GetGifLocationXY method

Description:

This function does the opposite of the one above, it returns an (x,y) point
in the GIF image corresponding to a given location (location can be any
valid PCM location: Lat/Long, postal code, city/state, or POI).

Visual Basic Syntax:
 mapObj.GetGifLocationXY(width, height, BSTR)
Com – Interface:

HRESULT GetGifLocationXY ([in] long width, [in] long height, [in]
BSTR, [out] long *x, [out] long *y);

Part Type Description
width long width of GIF in pixels
height long height of GIF in pixels
BSTR string PC*MILER Lat/Long, postcode, city/state, POI
x long horizontal position
y long vertical position

Remarks:
 PCMGGetGifLocationXY

 Chapter 5: Using the PC*MILER|Mapping COM Server 93

5.4 PCMMapSettings PROPERTIES

X property (read)

Description:
 Returns the x coordinate of the map settings object.

Visual Basic Syntax:
 xcoord = MapSettingsObj.x

Part Type Description
xcoord long the x coordinate of this object

Y property (read)

Description:
 Returns the y coordinate of the map settings object.

Visual Basic Syntax:
 ycoord = MapSettingsObj.y

Part Type Description
ycoord long the y coordinate of this object

Xzoom property (read)

Description:
 Returns the xzoom level of the map settings object.

Visual Basic Syntax:
 xzoomlevel = MapSettingsObj.xZoom

Part Type Description
xzoomlevel long the xzoom level

 PC*MILER|Mapping User’s Guide 94

Yzoom property (read)

Description:
 Returns the yzoom level of the map settings object.

Visual Basic Syntax:
 yzoomlevel = MapSettingsObj.yZoom

Part Type Description
yzoomlevel long the yzoom level

Detail property (read)

Description:
 Returns the detail level of the map settings object.

Visual Basic Syntax:
 detaillevel = MapSettingsObj.Detail

Part Type Description
detaillevel long the detail level

 PC*MILER|Mapping User’s Guide 95

Trouble-shooting (Helpful Hints)

Postal codes with leading zero’s

If you enter a postal code with a leading zero (e.g. 08540) Excel may interpret it
as a number and remove the leading zero. To correct this problem, either type an
apostrophe in front of the postal code (e.g. ‘08540) or format the field as text.

‘Cannot access PCMGMP32.XLA’ error

When you open the Add-in dialog box, a dialog box appears that gives the above
error. Microsoft has acknowledged this problem and is researching it. Please call
Microsoft and refer to document number Q128186for a status update if you are
experiencing this problem.

To access pcmgmp32.xla, exit and restart Excel and manually enable the Add-In
(see Chapter 4).

‘Cannot find VBAEN.OLB’ error

Excel will attempt to access this file when it tries to load the Add-In. First, make
sure that the file vbaen.olb exists. It should be either in the Windows directory or
the SYSTEM subdirectory inside the Windows directory. If the file does not exist,
you must re-install Windows.

If the file exists, then the problem is in the Windows Registration File (reg.dat).
The location of vbaen.olb is saved in the reg.dat. Make sure the path to this file
in the reg.dat points to the correct location. You can run REGEDIT /V to
view/edit the reg.dat. Note: We do not support making modifications to this file.
Please make a backup copy before making any changes.

Look for the key "TypeLib". Look for the Win17 selection. Under this section
should be a complete path to the vbaen.olb. Ensure the full path is correct.

‘Sub or function not defined’ error

When making calls to PC*MILER|Mapping from a macro sheet, you may see this
message. To fix the problem, from the Tools menu select References and make
sure that pcmgmp32.xla is checked.

6 C
h

ap
te

r

 PC*MILER|Mapping User’s Guide 96

PC*MILER|Mapping won’t restart

Under certain circumstances when using Windows for Workgroups the
pcmgmap.exe will not start after it has been opened and closed. To restart it you
must exit Windows. To avoid this problem, always exit Excel before exiting the
PC*MILER|Mapping program.

Bitmaps do not draw

On some machines with very little video memory (like laptops), bitmaps may not
be drawn on the screen. To reduce the demand on video memory, change video
drivers to reduce the number of colors being rendered or move to a lower
resolution video mode.

You have problems using custom routing from PC*MILER

If you have problems using custom routing that you created in PC*MILER, set
the value of the following item in the PCMSERVE.INI file to TRUE:

CustomRoute = TRUE

The PCMSERVE.INI file is located in your Windows or Winnt folder. See
Appendix B.

 PC*MILER|Mapping User’s Guide 97

Appendix A:
Location of Header Files & Sample Code

The header files pcmgmap.h, pcmgwin.h, and pcmgwinex.hfor
unmanaged win32 applications can be found in the C_CPP folder of the
PC*MILER|Mapping installation (usually C:\ALK
Technologies\PCMILER28\Mapping\C_CPP). Sample code is in the
same location.

Pcmgmap.def and pcmgwin.def are found in the Mapping folder. Other
subfolders in the Mapping folderinclude additional files containing sample code
and additional documentation, along with descriptive ReadMe files.

A A
p

p
en

d
ix

 PC*MILER|Mapping User’s Guide 98

Appendix B:
 The PCMSERVE.INI File

PC*MILER|Mapping and PC*MILER|Connect share the same INI file
(PCMSERVE.INI).You can modify the INI file to set default trip options so that these
options are active each time PC*MILER|Mappingstarts up. This file is located in your
Windows or Windows NT folder, and can be opened using Notepad, Wordpad, or another text
editor.

Note that trip options can also be set using the API functions or in PC*MILER interactive.
An option set with an API function takes precedence over both the INI setting and the
setting in PC*MILER interactive. The order of precedence is as follows:

1. Options that are set using PC*MILER|Mapping functions prevail over the default options
set in PC*MILER and the INI file.

2. Options set in PCMSERVE.INI prevail over those set in PC*MILER.

3. Options set in PC*MILER as defaults take effect only in the absence of settings 1 and 2.

NOTE: Beginning in Version 26, customizations in the PCMSERVE.INI file from the
previous version are retained when you install a new version of PC*MILER.

Settings in the INI that can be added or edited are listed below. If you open the INI file, you
won’t see all of these settings in it.If any key doesn’t have a value or is not found in the INI
file, it assumes the default value or the value set in PC*MILER interactive.

Key

Valid Values Description

[Engine]

ShowEngine= 0
1

Should Connect automaticallystart the
engine (1) or not (0).
Default = 0

[Logging]

Enable= 0
1

Should log files be generated (1) or not
(0).
Default = 0

File= Path/file name of log file.

Append= 0

1
Append to old file (1) or write over (0).
Default = 0

MaxStrLen= Any integer up
to 254

Assign number of characters to truncate

B A
p

p
en

d
ix

 Appendix B: The PCMSERVE.INI File 99

log messages to (optional).

DisplayTime= 0
1

When DisplayTime = 1, date and time
are shown at the beginning of each line
in specified log file.
Default = 0

[Defaults]

CalcType= Practical
Shortest
National
AvoidToll
Air
FiftyThree

The default routing type: most Practical,
Shortest by distance, favor National
Network highways, avoid tolls, air
(straight line), or 53 foot trailer routing.

Default = Practical
Note: Toll-discouraged, national, and
53’ routing are based on Practical miles.
Note Also: When 53' Trailer routing is
selected, the National Network is
automatically included – but not
necessarily vice versa.

Units= Miles

Kilometers
What unit of measure should distance be
shown in.
Default = Miles

ChangeDest= TRUE
FALSE

When optimizing the route, should the
trip’s destination be optimized also (T).
Default = False

Borders= TRUE
FALSE

Should the engine try to keep routes
within the United States (F), or can they
cross and recross the borders at will (T).
Default = True

HubMode= TRUE
FALSE

Calculate the routes from the origin to
each stop (T), not through each stop (F).
Default = False

AlphaOrder= TRUE
FALSE

List the states in the State Report in
alphabetical order (T) or in the order
driven (F).
Default = True

FerryMiles= TRUE
FALSE

Use ferry distances in mileage and cost
calculations (T), or don’t use (F).
Default = True

LightVehicle= TRUE
FALSE

Should the DLL use Light Vehicle
routing (only available if Streets data is

 PC*MILER|Mapping User’s Guide 100

installed with PC*MILER).
Default=False

MAPPING=

TRUE
FALSE

(AS/400 parameter)
Default = False

EXPMAP=

TRUE
FALSE

(AS/400 parameter)
Default = False

[Options]

CustomRoute= TRUE
FALSE

Should PC*MILER|Connectuse Custom
routing.
Default = False

HazRoute=
(with PC*MILER|Hazmat add-
on only)

None
General
Explosive
Inhalant
Radioactive
Corrosive
Flammable
HarmfultoWater

Hazardous material routing types for
North America are: none (hazmat
routing disabled), general, explosive,
inhalant, radioactive, corrosive, or
flammable. For Europe or Oceania,
hazmat route types are: none, general,
explosive, flammable, or harmful to
water.
Default (all regions) = None

PartialCityMatch= TRUE
FALSE

Enables the return of a city match on a
partial match of 28 characters.
Default = False

HistoricalRoadSpe
eds=

TRUE
FALSE

Toggles activation of traffic data for use
in time-based routing. Equivalent to the
“Use Traffic Data” button in
PC*MILER.
Default = False

TranslateAlias=

TRUE
FALSE

This setting pertains to geocoding in
PC*MILER|FuelTax. It changes “*” and
“()” in a custom place name to a “Zip-
City-State; Address” format.

UseUSPostCodes=

TRUE
FALSE

When set to TRUE, if a 5-digit postal
code might be a U.S. or a Mexican code,
the U.S. code will be used.
Default = True (see note below)

UseMexPostCodes=

TRUE
FALSE

When set to TRUE, if a 5-digit postal
code might be a U.S. or a Mexican code,
the Mexican code will be used.
Default = False

 Appendix B: The PCMSERVE.INI File 101

NOTE: If UseUSPostCodes and
UseMexPostCodes are both FALSE,
or are not in the INI, the default U.S.
code will be used.

UseStreets=
(with PC*MILER|Streets data
only)

TRUE
FALSE

Should street-level (T) or highway-only
(F) routing be used when stops are city
names or postal codes.
Default = False

LatLonFormatDecima
l=

TRUE
FALSE

Pertains to the function
PCMSAddressToLatLong(), causing
the function to return lat/longs in decimal
degrees (e.g. 40.348848N,74.662703W).
When this line is not included in the .INI
or is included but =FALSE, the function
returns degrees, minutes, seconds (e.g.
0402056N,0743946W).
Default = False (Note: when this line is
not present, default = false)

UseNLAbbrevInMX= TRUE
FALSE

When set to TRUE, the “NL”
abbreviation geocodes to Nuevo Leon in
Mexico.
Default=False

UseOverlapIcon= TRUE
FALSE

Should overlap icons be used when pins
overlap.
Default=True

UseOverlapCount= TRUE
FALSE

Place pin count in overlap icon (e.g. an
icon representing three overlapping pins
will have a “3” text label).
Default=True

CountryAbbrevType= FIPS
ISO2
ISO3
GENC2
GENC3

For PC*MILER|Worldwide, this option
sets the country code format that will be
accepted when using city name/country
abbreviations as locations in regions
other than North America.
Default = FIPS

[MappingOptions]

AvoidFavorAutoSave
=

TRUE
FALSE

(PC*MILER|Mapping) This option can
be set to TRUE to autosave avoids/favors
on shutdown.
Default = False (Note: when this line is

 PC*MILER|Mapping User’s Guide 102

not present, default = false)

GeofenceAutoSave= TRUE
FALSE

(PC*MILER|Mapping) With this option
set to TRUE, PC*MILER|Mapping
automatically saves geofence data on
shutdown.
Default = True (Note: when this line is
not present, default = true)

[Defaults]

Region= NA
SA
Africa
Asia
Europe
ME
Oceania

Default region is NA (North America).
Other regions available with
PC*MILER|Worldwide.

ClassicMap=
(Optional, may be added)

FALSE
TRUE

Map will display in PC*MILER Version
18 style when set to TRUE.

DragMode=
(Optional, may be added)

FALSE
TRUE

When set to TRUE, user can drag the
map in any direction to shift the view.

ProductName= PC*MILER

Product Version= 28 Current version of PC*MILER.

DLLPath= Usually C:\ALK
Technologies\
PCMILER28\app

Path to the current installation of
PC*MILER.

 PC*MILER|Mapping User’s Guide 103

Appendix C:
Error Codes

General error -10
Pin map does not exist -20
Failed to create pin map -21
Unknown location -22
Bad bit map -23
Bad bit map file -24
Pin does not exist -25
Bad importance value -26
Map does not exist -27
Failed to create route -28
Not enough stops -29
Invalid stop -30
Trip not ready -31
Route not run -32
Invalid style -33
Invalid route options -34
Failed to create line -35
Invalid point -36
Not enough points -37
Invalid arguments -38
Route does not exist -39
Line does not exist -40

C A
p

p
en

d
ix

 PC*MILER|Mapping User’s Guide 104

Appendix D:
Alphabetical Function Index

/*COM function*/ CopyToClipboard (PCMMap method), 75
/*COM function*/ CreateGifBytes (PCMMap method), 76
/*COM function*/ CreateGifFile (PCMMap method), 75
/*COM function*/ CreateMap (PCMMapMgr method), 73
/*COM function*/ DeleteLabel (PCMMap method), 77
/*COM function*/ DeleteLine (PCMMap method), 77
/*COM function*/ DeletePin (PCMMap method), 77
/*COM function*/ DeletePinMap (PCMMap method), 78
/*COM function*/ DeleteTrip (PCMMap method), 78
/*COM function*/ Detail (PCMMap method), 94
/*COM function*/ ErrorCode (PCMMapMgr property), 73
/*COM function*/ FrameArea (PCMMap method), 79
/*COM function*/ FramePin (PCMMap method), 79
/*COM function*/ FramePinMap (PCMMap method), 79
/*COM function*/ FrameRoute (PCMMap method), 80
/*COM function*/ FrameTrip (PCMMap method), 80
/*COM function*/ GetFrameArea (PCMMap method), 81
/*COM function*/ GetGifLocationXY (PCMMap method), 92
/*COM function*/ IsOK (PCMMapMgr property), 73
/*COM function*/ LessDetail (PCMMap method), 81
/*COM function*/ MapID (PCMMap property), 74
/*COM function*/ MapSettings (PCMMap property), 74
/*COM function*/ MoreDetail (PCMMap method), 81
/*COM function*/ NumFrameAreas (PCMMap property), 75
/*COM function*/ Paint (PCMMap method), 82
/*COM function*/ Pan (PCMMap method), 82
/*COM function*/ PlotLabel (PCMMap method), 83
/*COM function*/ PlotLine (PCMMap method), 84
/*COM function*/ PlotPin (PCMMap method), 84
/*COM function*/ PlotTrip (PCMMap method), 86
/*COM function*/ Print (PCMMap method), 86
/*COM function*/ SetGifDirectory (PCMMap method), 87
/*COM function*/ SetMapSettings (PCMMap method), 87
/*COM function*/ SetOverlapIconName (PCMMap method), 85
/*COM function*/ SetScaleUnits (PCMMap method), 88
/*COM function*/ SetUseOverlapIcon (PCMMap method), 85
/*COM function*/ ShowLayer (PCMMap method), 89
/*COM function*/ ShowPinMap (PCMMap method), 89
/*COM function*/ ToggeRoadLegend (PCMMap method), 88
/*COM function*/ ToggleRouteLegend (PCMMap method), 89
/*COM function*/ ToggleScaleLegend (PCMMap method), 88
/*COM function*/ UpdateRoute (PCMMap method), 90
/*COM function*/ UpdateRoute2 (PCMMap method), 90

D A
p

p
en

d
ix

 Appendix D: Alphabetical Function Index 105

/*COM function*/ X (PCMMap property), 93
/*COM function*/ Xzoom (PCMMap property), 93
/*COM function*/ Y (PCMMap property), 93
/*COM function*/ Yzoom (PCMMap method), 94
/*COM function*/ ZoomIn (PCMMap method), 91
/*COM function*/ ZoomOut (PCMMap method), 91
/*COM function*/ ZoomTo (PCMMap method), 91
/*COM function*/ ZoomToPlace (PCMMap method), 92
/*COM object*/ PCMMap, 69, 70
/*COM object*/ PCMMapSettings, 70

/*Excel function*/ DeleteLineID, 66
/*Excel function*/ DeletePinID, 65
/*Excel function*/ DeletePins, 65
/*Excel function*/ DeleteTripID, 67
/*Excel function*/ DeleteTrips, 67
/*Excel function*/ DeletLines, 66
/*Excel function*/ PlotLine, 63
/*Excel function*/ PlotLineID, 63
/*Excel function*/ PlotPin, 58
/*Excel function*/ PlotPinID, 58
/*Excel function*/ PlotTrip, 61
/*Excel function*/ PlotTripID, 61

PCMGActivateGeofence, 47
PCMGActivateGeofenceSet, 48
PCMGAddDetail, 22
PCMGAddGeofence, 46
PCMGAddGeofenceSet, 48
PCMGAddGeofenceToSet, 48
PCMGAddStateHighlight, 50
PCMGAddStreetHighlight, 51
PCMGCleanupMap, 14, 29, 53
PCMGClearLabels, 20
PCMGCloseMap, 12, 14
PCMGCloseMapEx, 53
PCMGCopyMap, 19
PCMGCreateChildMap, 52
PCMGCreateGifFile, 36
PCMGCreateMapChild, 12, 13
PCMGCreateMapChildEx, 53
PCMGCreateMapWindow, 12, 13, 29, 34
PCMGCreateMapWindowEx, 53
PCMGDefaultDetail, 22
PCMGDeleteAllStreetHighlights, 51
PCMGDeleteGeofence, 47
PCMGDeleteGeofenceSet, 48
PCMGDeleteLabel, 25, 39

 PC*MILER|Mapping User’s Guide 106

PCMGDeleteLine, 43, 68
PCMGDeletePin, 39, 68
PCMGDeletePinmap, 44, 68
PCMGDeleteStateHighlight, 50
PCMGDeleteStreetHighlight, 51
PCMGDeleteTrip, 68
PCMGDeleteTripLayer, 44
PCMGFindGeofenceID, 48
PCMGFindGeofenceSetID, 49
PCMGFrameArea, 23
PCMGFramePin, 39, 68
PCMGFramePinmap, 44, 68
PCMGFrameTrip, 44
PCMGFrameTripLayer, 44
PCMGGetActiveMapStyle, 14
PCMGGetCityLabeling, 19
PCMGGetDebug, 68
PCMGGetDefaultRegion, 45
PCMGGetDetailAdjust, 22
PCMGGetDetailLevel, 22
PCMGGetDisplayModule, 52
PCMGGetDisplayWindow, 52
PCMGGetDrawerCount, 17
PCMGGetDrawerInfo, 18
PCMGGetFrameArea, 23
PCMGGetGeofenceFromSet, 50
PCMGGetGeofenceName, 48
PCMGGetGeofenceSet, 50
PCMGGetGeofenceSetBorderColor, 49
PCMGGetGeofenceSetColor, 49
PCMGGetGeofenceSetName, 49
PCMGGetMapStyleList, 14
PCMGGetMapWindowDims, 15
PCMGGetPinPicking, 20
PCMGGetProjectionRect, 15
PCMGGetRegionName, 45
PCMGGetRestrictionsLegend, 21
PCMGGetRoadLabeling, 19
PCMGGetRoadLegend, 21
PCMGGetRouteDistTooltip, 20
PCMGGetRouteLegend, 21
PCMGGetScale, 22
PCMGGetStateHighlightColor, 50
PCMGGetTrafficLegend, 21
PCMGHideLayer, 24
PCMGInitMap, 12, 29, 34
PCMGIsGeofenceActive, 47
PCMGIsGeofenceSetActive, 49

 Appendix D: Alphabetical Function Index 107

PCMGLatLongToPixel, 17
PCMGModifyGeofenceBorderColor, 47
PCMGModifyGeofenceColor, 47
PCMGModifyGeofenceSetBorderColor, 49
PCMGModifyGeofenceSetColor, 49
PCMGNumFrameAreas, 23
PCMGNumGeofenceSets, 50
PCMGNumGeofencesInSet, 50
PCMGNumRegions, 45
PCMGPixelToLatLong, 17
PCMGPlotLabel, 24, 39, 40
PCMGPlotLine, 42, 68
PCMGPlotPin, 34, 35, 37, 39, 40, 41, 42, 43, 68
PCMGPlotTrip, 41, 68
PCMGPrintMap, 18
PCMGPrintMapOnDC, 19
PCMGRedraw, 19
PCMGRemoveDetail, 22
PCMGRemoveGeofenceFromSet, 48
PCMGResizeMapChild, 13
PCMGScrollMapView, 18
PCMGSetCallBack, 25, 29
PCMGSetCanWindow, 23
PCMGSetCityLabeling, 19
PCMGSetDebug, 68
PCMGSetDefaultRegion, 45
PCMGSetDisplayModule, 52
PCMGSetDisplayWindow, 34, 35, 52
PCMGSetDrawerVisible, 18
PCMGSetGeofenceName, 48
PCMGSetGeofenceSetName, 49
PCMGSetInfoLabels, 43, 68
PCMGSetMapResizeCallback, 26
PCMGSetMapStyle, 15
PCMGSetMexWindow, 23
PCMGSetMouseInterceptCallback, 25
PCMGSetNAWindow, 23
PCMGSetOverlapIconName, 25
PCMGSetPinPicking, 20
PCMGSetProjectionCenter, 16
PCMGSetProjectionRadius, 16
PCMGSetProjectionRect, 15
PCMGSetReceiver, 25, 29
PCMGSetRedraw, 52, 68
PCMGSetRestrictionsLegend, 21
PCMGSetRoadLabeling, 19
PCMGSetRoadLegend, 20
PCMGSetRouteDistTooltip, 20

 PC*MILER|Mapping User’s Guide 108

PCMGSetRouteLegend, 21
PCMGSetScale, 22
PCMGSetTrafficLegend, 21
PCMGSetUseOverlapIcon, 25
PCMGSetUSWindow, 22
PCMGShowLayer, 24
PCMGShowPinmap, 44, 68
PCMGSwitchRegion, 45
PCMGToggleCityPicking, 19
PCMGTogglePinPicking, 20
PCMGToggleRestrictionsLegend, 21
PCMGToggleRoadLegend, 21
PCMGToggleRoadPicking, 19
PCMGToggleRouteDistTooltip, 20
PCMGToggleRouteLegend, 21
PCMGToggleScale, 22
PCMGToggleTrafficLegend, 21
PCMGTrafficStatus, 53
PCMGZoomIn, 24
PCMGZoomOut, 24
PCMGZoomToPlace, 24

