

ALL RIGHTS RESERVED

You may print one (1) copy of this document for your personal use. Otherwise, no part of
this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language, in any form or by any means electronic, mechanical, magnetic,
optical, or otherwise, without prior written permission from ALK Technologies, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United
States and other countries.

PC*MILER, CoPilot, ALK and RouteSync are registered trademarks of ALK Technologies,
Inc.

Copyright 2015 Railinc Corporation. All Rights Reserved. The Centralized Station Master,
Junction-Interchange Master and Mark/SCAC Register appearing in this publication may not
be reproduced without express permission from Railinc.

Contains information licensed under the Open Government License – Canada.

Geographic feature POI data compiled by the U.S. Geological Survey.

Cartographic data provided by multiple sources including lnstituto Nacional de Estadistica y
Geografia, U.S. Geological Survey, Natural Earth and © Department of Natural Resources
Canada. All rights reserved.

Source of map data for Mexico provided by lnstituto Nacional de Estadistica y Geografia.

ALK Data © 2015 – All Rights Reserved.

ALK Technologies, Inc. reserves the right to make changes or improvements to its programs
and documentation materials at any time and without prior notice.

Copyright 1989-2015 ALK Technologies, Inc.
457 North Harrison Street, Princeton, NJ 08540

 Table of Contents

PC*MILER End User License Agreement iii

Chapter 1: Introduction Error! Bookmark not defined.
1.1 What is PC*MILER|Rail? ...2
1.2 PC*MILER|Rail Route Calculation ..2
1.3 PC*MILER|Rail Route Formulas ..3
1.4 New and Recent Enhancements ..3

Chapter 2: Getting Started ... 5

2.1 Requirements ...5
2.2 Installing PC*MILER|Rail-Connect ...5
2.3 Adding Connect to a PC*MILER|Rail Installation ...6
2.4 Technical Support Options ..7
2.5 User Guides ...8
2.6 Licensing ...8
2.7 Applications That Use the PC*MILER|Rail-Connect DLL8

Chapter 3: Basic Concepts .. 9

3.1 Server, Trips and Mapping ..9
3.2 Stops ..10
3.3 Reports ...11
3.4 Trip Options ..11
3.5 Log File Setup ...12
3.6 The Connect Tester ...13

Chapter 4: Using PC*MILER|Rail-Connect from ‘C’ 14

4.1 Building a PC*MILER|Rail-Connect Client Application14
4.2 Starting and Stopping the Server ...15
4.3 Running Simple Routes ...17
4.4 Building a Trip ..19
4.5 Managing Stops ...20
4.6 Looking Up Place Names and Railroads (Geocoding)21
4.7 Requesting Lat/Long Coordinates Along a Route ..24
4.8 Getting a Mileage Breakdown by Railroad and State25
4.9 Changing Options ..27
4.10 Managing Overrides ..29
4.11 Generating and Retrieving Reports ...30
4.12 Switching the Map Dataset ..32
4.13 Error Handling ...34
4.14 AutoRouting Functions ...35
4.15 Setting Up IIS ..38

 PC*MILER|Rail-Connect User’s Guide i

4.16 Calling PC*MILER|Rail APIs from a Web Service39

Chapter 5: Using PC*MILER|Rail-Connect from Excel 43

5.1 Enabling the Excel Add-Ins ..43
5.2 Using the PC*MILER|Rail-Spreadsheets Mileage Function46

5.2.1 Getting the Miles Between Two Points ...46
5.2.2 Using Overrides ...48

Chapter 6: PC*MILER|Rail-Connect Mapping 49

Chapter 7: Mapping Functions In Excel 50

7.1 Plotting an Icon ...50
7.2 PC*MILER|Rail-Connect Icons ..51
7.3 Plotting Lines and Trips ..52
7.4 Plotting a Trip Between Two Points ...52
7.5 Plotting a Line Between Two Points ...52
7.6 Deleting Icons ..53
7.7 Deleting Lines ...53
7.8 Deleting Trips ..53

Chapter 8: Advanced Mapping Functions 54

8.1 Functions for Creating a Map Window ...54
8.1 Pin Functions ...55
8.2 Trip and Line Functions ..57
8.3 Layer Management Functions ...58

Appendix A: ‘C’ Function Declarations 60

Appendix B: Troubleshooting Guide 73

Running your application generates the error ‘Cannot find
PCRSRV32.DLL’ ..73

You have problems using overrides ...73
The pcrstest.xls spreadsheet ...73
‘Cannot find VBAEN.OLB’ error ..73
‘Sub or function not defined’ error ...74
‘-1’ error ...74
Running your application generates the error ‘pcrwin32.exe has stopped

working’ ...74

Appendix C: The PC*MILER|Rail TCP/IP Interface 75

Appendix D: Error Code Descriptions 79

Appendix E: State Index Values .. 81

 PC*MILER|Rail-Connect User’s Guide ii

PC*MILER®|Rail

END-USER LICENSE AGREEMENT

1. Grant of License: Subject to the terms, conditions, use limitations and payment of
fees as set forth herein, ALK Technologies, Inc. ("ALK") grants the end-user ("you") a
non-assignable, non-transferable, non-exclusive license to install and use the
PC*MILER|Rail solution(s) you have purchased ("PC*MILER|Rail") on a single
personal computer. The PC*MILER|Rail software, data and documentation are provided
for your personal, internal use only and not for resale. They are protected by copyright
held by ALK and its licensors and are subject to the following terms and conditions
which are agreed to by you, on the one hand, and ALK and its licensors (including their
licensors and suppliers) on the other hand.

2. Title: You acknowledge that the PC*MILER|Rail computer programs, data, concepts,
graphics, documentation, manuals and other material owned by, developed by or
licensed to ALK, including but not limited to program output (together, “program
materials”), are the exclusive property of ALK or its licensors. You do not secure title to
any PC*MILER|Rail program materials by virtue of this license.

3. Copies: You may make one (1) copy of the PC*MILER|Rail program materials,
provided you retain such copy in your possession and use it solely for backup purposes.
You agree to reproduce the copyright and other proprietary rights notices of ALK and its
licensors on such a copy. Otherwise, you agree not to copy, reverse engineer,
interrogate, or decode any PC*MILER|Rail program materials or attempt to defeat
protection provided by ALK for preventing unauthorized copying or use of
PC*MILER|Rail or to derive any source code or algorithms therefrom. You
acknowledge that unauthorized use or reproduction of copies of any program materials
or unauthorized transfer of any copy of the program materials is a serious crime and is
grounds for suit for damages, injunctive relief and attorneys' fees.

4. Limitations on Transfer: This license is granted to you by ALK. You may not directly
or indirectly lease, sublicense, sell, disseminate, or otherwise transfer PC*MILER|Rail
or any PC*MILER|Rail program materials to third parties, or offer information services
to third parties utilizing the PC*MILER|Rail program materials without ALK's prior
written consent. To comply with this limitation, you must uninstall and deactivate
PC*MILER|Rail from your computer prior to selling or transferring that computer to a
third party.

5. Limitations on Network Access: You may not allow end-users or software
applications on other computers or devices to directly or indirectly access this copy of
PC*MILER|Rail via any type of computer or communications network (including but
not limited to local area networks, wide area networks, intranets, extranets, the internet,
virtual private networks, Wi-Fi, Bluetooth, and cellular and satellite communications
systems), using middleware (including but not limited to Citrix MetaFrame and
Microsoft Terminal Server) or otherwise (including but not limited to access through

 PC*MILER|Rail-Connect User’s Guide iii

PC*MILER|Rail interface products), or install or use PC*MILER|Rail on a network file
server, without first notifying ALK, executing a written supplemental license agreement,
and paying the license fee that corresponds to the number and types of uses to which
access is to be allowed.

6. Limitations on Data Extraction: You may manually extract data (including but not
limited to program output such as distances, maps, and reports) from PC*MILER|Rail
and use it in other applications on the same computer on which PC*MILER|Rail is
legally licensed and installed, as permitted below. You may not transfer data extracted
from PC*MILER|Rail onto any other computer or device unless you have licensed
PC*MILER|Rail for that computer or device. You agree that you will not, nor will you
permit your trade partners or anyone else to, use content derived from PC*MILER|Rail,
including route line data, nor display such data or integrate such data into another
provider’s service, including, but not limited to, Google or Bing. You agree not to pre-
fetch, retrieve, cache, index, or store any data, content, or other portion of the product
output at any time, provided, however, that you may temporarily store (for less than
thirty (30) days) limited amounts of such content for the sole and exclusive purpose of
enhancing the performance of your implementation due to network latency, and only if
you do so securely and in a manner that: (a) does not permit use of the content outside of
the scope of this Agreement; (b) does not manipulate or aggregate any content or portion
thereof; (c) does not prevent ALK from accurately tracking usage; and (d) does not
modify attribution of the product in any way.

7. Limitations on Mobile Communications: Without limiting the generality of the
foregoing, you may not transmit PC*MILER|Rail street-level driving directions through
mobile communications systems such as satellite, cellular services, electronic recording
devices, or to mobile devices such as computers, telematics systems, on board or mobile
computers or Smartphones, handhelds, pagers, electronic recording devices or
telephones without first executing a written supplemental license agreement with ALK
and paying the license fee that corresponds to the number and types of devices and
systems to and through which transmission is to be permitted. You may not use this
License, any of the Licensed Product, or its reports, to create a competitive product,
solution or visualization platform.

8. Limitations on Disclosure: You may disclose PC*MILER|Rail distances to trading
partners, in the course of their providing services to you, for specific origin-destination
moves for which you provide transportation services and use PC*MILER|Rail distances
as a basis for payment. You may not make any other disclosure of PC*MILER|Rail
programs and materials, including, but not limited to, program output, to anyone outside
the legal entity that paid for and holds this license, without prior written permission of
ALK. You acknowledge that the PC*MILER|Rail programs and materials, developed by
or licensed to ALK are very valuable to ALK and its licensors, and their use or
disclosure to third parties, except as permitted by this license or by a written
supplemental license agreement with ALK, is strictly prohibited.

9. Security: You agree to take reasonable and prudent steps to safeguard the security of
the PC*MILER|Rail program materials and to notify ALK immediately if you become

 PC*MILER|Rail-Connect User’s Guide iv

aware of the theft or unauthorized possession, use, transfer or sale of the
PC*MILER|Rail program materials licensed to you by ALK.

10. Acceptance: You are deemed to have accepted the PC*MILER|Rail program
materials upon receipt.

11. Warranties: ALK represents and warrants that:

a) For ninety (90) days from date of purchase, PC*MILER|Rail, when delivered and
properly installed, will function substantially according to its specifications on a
computer purchased independently by you.

b) For ninety (90) days from date of purchase, the software media on which ALK
provides PC*MILER|Rail to you will function substantially free of errors and
defects. ALK will replace defective media during the warranty period at no charge to
you unless the defect is the result of accident, abuse, or misapplication of the
product.

c) THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER
WARRANTIES EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITING
THE GENERALITY OF THE FOREGOING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE
PC*MILER|Rail PROGRAM, DATA AND DOCUMENTATION IS SOLD "AS
IS". IN NO EVENT SHALL ALK OR ITS LICENSORS BE LIABLE FOR ANY
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES SUCH AS, BUT NOT
LIMITED TO, LOSS IN CONNECTION WITH OR ARISING OUT OF THE
EXISTENCE OF THE FURNISHING, FUNCTIONING OR USE OF ANY ITEM
OF SOFTWARE, DATA OR SERVICES PROVIDED FOR IN THIS
AGREEMENT. IN NO EVENT SHALL DAMAGES TO WHICH ALK MAY BE
SUBJECT UNDER THIS AGREEMENT EXCEED THE CONTRACT PRICE.
THIS WARRANTY SHALL NOT ACCRUE TO THE BENEFIT OF THIRD
PARTIES OR ASSIGNEES.

12. Disclaimer: The data may contain inaccurate, incomplete or untimely information
due to the passage of time, changing circumstances, sources used and the nature of
collecting comprehensive geographic data, any of which may lead to incorrect results.
PC*MILER|Rail’s suggested routings and distances data are provided without a
warranty of any kind. The user assumes full responsibility for any delay, expense, loss
or damage that may occur as a result of their use. The user shall have no recourse
against Canada, whether by way of any suit or action, for any loss, liability, damage or
cost that may occur at any time, by reason of possession or use of Natural Resources
Canada data.

This data is provided to you “as is,” and you agree to use it at your own risk. ALK and
its licensors (and their licensors and suppliers) make no guarantees, representations or
warranties of any kind, express or implied, arising by law or otherwise, including but not
limited to, content, quality, accuracy, completeness, effectiveness, reliability, fitness for

 PC*MILER|Rail End-User License Agreement v

a particular purpose, usefulness, use or results to be obtained from this Data, or that the
Data or server will be uninterrupted or error-free.

13. Termination: This Agreement will terminate immediately upon any of the following
events:

a) If you seek an order for relief under the bankruptcy laws of the United States or
similar laws of any other jurisdiction, or a composition with or assignment for the
benefit of creditors, or dissolution or liquidation, or if proceedings under any
bankruptcy or insolvency law are commenced against you and are not discharged
within thirty (30) calendar days.

b) If you materially breach any terms, conditions, use limitations, payment
obligations, or any other terms of this Agreement.

c) Upon expiration of any written supplemental license agreement between you and
ALK of which this license is a part.

14. Obligations on Termination: Termination or expiration of this Agreement shall not
be construed to release you from any obligations that existed prior to the date of such
termination or expiration.

15. Hold Harmless and Indemnity: To the maximum extent permitted by applicable law,
you agree to hold harmless and indemnify ALK and its parent company, subsidiaries,
affiliates, officers, agents, licensors, owners, co-branders, other partners, and employees
from and against any third party claim (other than a third party claim for Intellectual
Property Rights) arising from or in any way related to your use of PC*MILER|Rail,
including any liability or expense arising from all claims, losses, damages (actual and/or
consequential), suits, judgments, litigation costs and attorneys' fees, of every kind and
nature. ALK shall use good faith efforts to provide you with written notice of such
claim, suit or action.

16. Intentionally omitted.

17. Limitations on Export: You hereby expressly agree not to export PC*MILER|Rail, in
whole or in part, or any data derived therefrom, in violation of any export or other laws
or regulations of the United States.

18. Aggregated Data: ALK may, from time to time, share information about You with
parent and sister or affiliated companies for business purposes and when necessary for it
to perform work under this Agreement. In addition, ALK may, and is hereby authorized
to, use, share and provide certain aggregated, non-identifiable information derived from
Your use of PC*MILER|Rail to third parties.

19. Intentionally omitted.

 PC*MILER|Rail-Connect User’s Guide vi

20. Additional Use Terms, Conditions, Restrictions and Obligations: This agreement
and your use of PC*MILER|Rail is expressly subject to the ALK Privacy Policy and the
ALK End User License Agreement Terms and Conditions (“EULA”) set forth below.
YOU ACKNOWLEDGE AND AGREE THAT YOU MAY NOT USE PC*MILER|Rail
IF YOU DO NOT ACCEPT THE TERMS AND CONDITIONS OF THE ALK EULA
AND THAT YOU HAVE REVIEWED AND ACCEPT THE TERMS AND
CONDITIONS OF THE ALK EULA BY INSTALLING OR ACTUALLY USING
PC*MILER|Rail.

21. Miscellaneous: This agreement shall be construed and applied in accordance with
the laws of the State of New Jersey. The Courts of the State of New Jersey shall be the
exclusive forum for all actions or interpretation pertaining to this agreement. Any
amendments or addenda to this agreement shall be in writing executed by all parties
hereto. This is the entire agreement between the parties and supersedes any prior or
contemporaneous agreements or understandings. Should any provision of this
agreement be found to be illegal or unenforceable, then only so much of this agreement
as shall be illegal or unenforceable shall be stricken and the balance of this agreement
shall remain in full force and effect.

22. Date: This EULA was last updated on November 2, 2015. Visit www.pcmiler.com
for regular updates.

END USER LICENSE AGREEMENT FOR ALK DATA

This license applies to ALK Data included in PC*MILER|Rail if any, as well as to ALK
data you obtain separately that is formatted for use with your Software.

The data (“Data”) is provided for your personal, internal use only and not for resale. It
is protected by copyright, and is subject to the following terms and conditions which are
agreed to by you, on the one hand, and ALK Technologies, Inc. (“ALK”) and its
licensors (including their licensors and suppliers) on the other hand.

© 2015 ALK. All rights reserved.

1. Personal Use Only: “You” means you as an End-user or as a “Company” on behalf of
its End-Users which are subject to either a Non-Disclosure Agreement as employees or a
License Agreement that contains the same restrictions as herein as a Value Added
Reseller. Also as used in this EULA “personal use” can also be understood in more
general terms as for a Company’s use. You agree to use this Data together with
PC*MILER|Rail for the solely personal, non-commercial purposes for which you were
licensed, and not for service bureau, time-sharing or other similar purposes.
Accordingly, but subject to the restrictions set forth in the following paragraphs, you
may copy this Data only as necessary for your personal use to (i) view it, and (ii) save it,
provided that you do not remove any copyright notices that appear and do not modify
the Data in any way. You agree not to otherwise reproduce copy, modify, decompile,
disassemble or reverse engineer any portion of this Data, and may not transfer or

 PC*MILER|Rail End-User License Agreement vii

http://www.pcmiler.com/

distribute it in any form, for any purpose, except to the extent permitted by mandatory
laws.

2. Restrictions: Except where you have been specifically licensed to do so by ALK in
the case of an integrated solution bundled or intended for use with specific smartphones,
similar mobile communication device(s) or personal navigation device(s), and without
limiting the preceding paragraph, you may not use this Data (a) with any products,
systems, or applications installed or otherwise connected to or in communication with
vehicles, capable of vehicle navigation, positioning, dispatch, real time route guidance,
fleet management or similar applications; or (b) with or in communication with any
positioning devices or any mobile or wireless-connected electronic or computer devices,
including without limitation cellular phones, smartphones, palmtop and handheld
computers, pagers, and personal digital assistants or PDAs. You may not use this
License, any of the Licensed Product, or its reports, to create a competitive product,
solution or visualization platform.

3. Warning: The Data may contain inaccurate, untimely or incomplete information due
to the passage of time, changing circumstances, sources used and the nature of collecting
comprehensive geographic data, any of which may lead to incorrect results. The
Highway Data is based on official highway maps, the Code of Federal Regulations, and
information provided by state governments and other licensors. It is provided without a
warranty of any kind. The user assumes full responsibility for any delay, expense, loss
or damage that may occur as a result of use of the Data.

4. No Warranty: This Data is provided to you “as is,” and you agree to use it at your
own risk. ALK and its licensors (and their licensors and suppliers) make no guarantees,
representations or warranties of any kind, express or implied, arising by law or
otherwise, including but not limited to, content, quality, accuracy, completeness,
effectiveness, reliability, fitness for a particular purpose, usefulness, use or results to be
obtained from this Data, or that the Data or server will be uninterrupted or error-free.

5. Disclaimer of Warranty: ALK AND ITS LICENSORS (INCLUDING THEIR
LICENSORS AND SUPPLIERS) DISCLAIM ANY WARRANTIES, EXPRESS
OR IMPLIED, OF QUALITY, PERFORMANCE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Some
States, Territories and Countries do not allow certain warranty exclusions, so to that
extent the above exclusion may not apply to you.

6. Disclaimer of Liability: ALK AND ITS LICENSORS (INCLUDING THEIR
LICENSORS AND SUPPLIERS) SHALL NOT BE LIABLE TO YOU: IN
RESPECT OF ANY CLAIM, DEMAND OR ACTION, IRRESPECTIVE OF THE
NATURE OF THE CAUSE OF THE CLAIM, DEMAND OR ACTION
ALLEGING ANY LOSS, INJURY OR DAMAGES, DIRECT OR INDIRECT,
WHICH MAY RESULT FROM THE USE OR POSSESSION OF THE
INFORMATION; OR FOR ANY LOSS OF PROFIT, REVENUE, CONTRACTS
OR SAVINGS, OR ANY OTHER DIRECT, INDIRECT, INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF YOUR USE

 PC*MILER|Rail-Connect User’s Guide viii

OF OR INABILITY TO USE THIS INFORMATION, ANY DEFECT IN THE
INFORMATION, OR THE BREACH OF THESE TERMS OR CONDITIONS,
WHETHER IN AN ACTION IN CONTRACT OR TORT OR BASED ON A
WARRANTY, EVEN IF ALK OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. Some States, Territories and Countries
do not allow certain liability exclusions or damages limitations, so to that extent the
above may not apply to you.

7. Export Control: You agree not to export from anywhere any part of the Data
provided to you or any direct product thereof except in compliance with and with all
licenses and approvals required under, applicable export laws, rules and regulations.

8. Entire Agreement: These terms and conditions constitute the entire agreement
between ALK (and its licensors, including their licensors and suppliers) and you
pertaining to the subject matter hereof, and supersedes in their entirety any and all
written or oral agreements previously existing between us with respect to such subject
matter.

9. Governing Law: The above terms and conditions shall be governed by the laws of the
State of New Jersey. The courts of the State of New Jersey shall have exclusive
jurisdiction to settle any and all disputes, claims and actions arising from or in
connection with the Data provided to you hereunder. You agree to submit to such
jurisdiction.

===
ALK TECHNOLOGIES, INC. | www.alk.com
===

 PC*MILER|Rail End-User License Agreement ix

Introduction

The PC*MILER|Rail family of products generates point-to-point mileage and
routes over the North American railroad systems. PC*MILER|Rail products will
calculate an unlimited number of routes and mileage on either a single personal
computer, or using a network installation.

PC*MILER|Rail-Connect offers transportation professionals and software
developers access to PC*MILER|Rail features from other applications. Client
applications are able to retrieve PC*MILER|Rail mileage, state-by-state mileage
breakdowns, and detailed station reports. PC*MILER|Rail-Connect allows easy
integration of PC*MILER|Rail mileage into popular software, such as Microsoft

Access, Microsoft Excel and custom applications built with software
development environments such as Visual Basic and Borland C++.
PC*MILER|Rail-Connect is a 32-bit DLL product which can run in a 32-bit
Windows environment.

PC*MILER|Rail-Connect calculates mileage for an origin-destination pair of
locations with intermediate stop-off points. Locations can be identified by station
and state, SPLC, FSAC (freight station code), ERPC (3-3-3), or Rule 260. The
PC*MILER|Rail-Connect Dynamic Link Library (DLL) is designed to fulfill all
the routing and mileage reporting needs of custom rail and shipper application
development.

Version 22 of PC*MILER|Rail-Connect provides:

• The PC*MILER|Rail Version 22 Database: Over 240,000 total miles of
rail line, over 49,400 active freight stations, 802 rail carriers, and over
4,000 unique junction interchanges. ALK Technologies’ proprietary
database is the industry standard for point-to-point routing and mileage.

• Support for Practical, Shortest, Intermodal, Coal/Bulk, Auto Racks, and
Fuel Surcharge route types (see section 1.3 below for descriptions).

• Standard report formats. You can insert all PC*MILER|Rail-Connect
reports as tab delimited text directly into your applications. Available reports
include the Detailed Report, Key Station Report, and Detailed Geocode
Report. These reports are the same ones that are available in PC*MILER|Rail.

• Directly accessible from other applications. All these features are accessible

from any development environment capable of calling a DLL. In addition,
most features are accessible from Microsoft Access, Microsoft Word,
Microsoft Excel and Lotus 1-2-3.

1 C
ha

pt
er

 PC*MILER|Rail-Connect User’s Guide 1

1.1 What is PC*MILER|Rail?

PC*MILER|Rail is point-to-point rail routing and mileage software. It provides
rail routes and mileage for rate determination and negotiation, equipment
management, rail car mileage auditing, and carrier selection.

Through ALK’s close working relationship with all major railroads,
PC*MILER|Rail features the industry-leading electronic representation of current
North American railroad routes and mileage. For over 30 years, ALK’s railroad
database has proven to be an accurate source for determining the routes and
mileage used in processing the U.S. Surface Transportation Board’s Carload
Waybill Sample. It has also been used in numerous traffic diversion studies and
in a variety of costing applications. ALK’s railroad database is widely used by
virtually all major railroads and rail car lessors.

PC*MILER|Rail generates routes and determines mileage between any two rail-
served locations in North America. Each location can be identified by station
name and state abbreviation or by commonly used geographic codes.

With PC*MILER|Rail you can quickly calculate the Shortest route (least
distance) and/or the Practical route (based on historical operations) between any
two points. You may specify interline junctions or let PC*MILER|Rail choose
junctions by weighing location versus gateway importance. A Fuel Surcharge
routing option is provided to accommodate the Surface Transportation Board
ruling on mileage-based fuel surcharge calculations. Routings for Intermodal,
Coal/Bulk and multi-level Auto Rack trains are also included.

1.2 PC*MILER|Rail Route Calculation

PC*MILER|Rail uses a minimum impedance routing program for computing
routes. The link impedance used in route calculations is derived as distance
multiplied by a cost factor, which essentially corresponds to route quality. High
density mainlines are given a lower link cost, while medium density mainline,
medium density branchline, and low density branchline have higher cost factors.
The minimum impedance route between any two nodes (geographic locations) on
ALK’s Rail Network is the sequence of links whose impedance sum is less than
that of any other sequence of links.

For interline routes calculated from the AutoRouter, junction interchange
impedances are added to link impedances. The junction impedance for the
forwarding and receiving railroads is based on the historic volume of traffic
interchanged at that junction to/from those railroads.

Link costs and junction costs may be different for each of the PC*MILER|Rail
routing types. Additionally, the link costs are adjusted to accommodate any
directional routing arrangements.

 PC*MILER|Rail-Connect User’s Guide 2

All the various cost factors have been derived from extensive research using
railroad timetables, maps provided by railroads, the Official Railway Guide,
Official Railroad Station List, Railroad Atlas, and county maps. ALK has
periodically updated these costs over the years to maintain a good match with
current realistic routes.

1.3 PC*MILER|Rail Route Formulas

PC*MILER|Rail includes six different routing formulas:

• Practical routings simulate the most likely movements of general

merchandise train traffic. Main lines are preferred to branch lines. A Practical
route can sometimes be more circuitous than the shortest possible route.

• Shortest route calculations find the rail route with the least distance between
the stops. In the Single Route entry mode, the shortest path within the railroad
is determined for each segment. In the AutoRouter, the shortest path across all
North American railroads is calculated, irrespective of origin and destination
railroad user choices.

• Intermodal, Coal/Bulk, or Auto Racks may be used to determine the
exceptional routings that these types of trains sometimes require.

• Fuel Surcharge routing is essentially a combination of the Shortest and
Practical route formulas (because some railroads use Shortest mileage and
some use Practical mileage when figuring their fuel surcharges). It provides
mileage suitable for calculating fuel surcharges in conformance with the
Surface Transportation Board ruling STB Ex Parte No. 661.

1.4 New and Recent Enhancements

Version 22:

• ENHANCED!... Multi-threading Capability. Improved multi-threading is
now available in PC*MILER|Rail-Connect for processing multiple requests
simultaneously.

• ENHANCED!... A Comprehensive Connect Tester. The PC*MILER|Rail-
Connect tester is enhanced to include a more comprehensive set of APIs. To
access the Connect or Mapping tester, go to the Windows Start menu > All
Programs (or the equivalent on your system) > PCMILER Rail 22 > Connect.

The Connect tester runs automatically when it is opened and outputs two files
into the App folder of the PC*MILER|Rail installation (usually C:\ALK

 Chapter 1: Introduction 3

Technologies\PCRWIN22\App): pcrstest.log describes the test cases that
should run, and pcrsrv22.log logs the progress of the tester program.

NOTE ON DEPRECATED FUNCTIONS: The Connect and Mapping
functions below have been deprecated in Version 22. They will return a fixed
default value and generate a log message stating that they are non-functional.

In PCRSRV32.DLL:
PCRSSetDebug
PCRSGetDebug
PCRSSendAboutInfo
PCRSSetReceiver
PCRSSetCallBack

In PCRMMP32.DLL:
PCRMSetDebug
PCRMGetDebug
PCRMSetDisplayModule
PCRMGetDisplayModule
PCRMSetDisplayWindow
PCRMGetDisplayWindow
PCRMSetRedraw
PCRSMoreDetail
PCRSLessDetail
PCRSSetCompoundPinIcon
PCRSTogglePickTrains
PCRSToggleLegendScaleOfMiles
PCRSSetPinPicking
PCRSGetPinPicking

Version 21:

No new features were added to PC*MILER|Rail-Connect 21.

Version 20:

• NEW!... Three New APIs For Switching the Map Dataset. Three new
APIs, PCRSSwitchDataSet, PCRSIsUpdateAvailable, and
PCRSGetAvailableUpdates, enable users to identify which data sets are
available and to switch between them. See section 4.12.

• ENHANCED!... More APIs Available Through the TCP/IP
Interface. Nine new PC*MILER|Rail-Connect APIs are now
available through the TCP/IP interface. See Appendix C.

 PC*MILER|Rail-Connect User’s Guide 4

Getting Started

2.1 Requirements

The PC*MILER|Rail-Connect product is intended to allow language-independent
Windows application development. You need to have:

• PC/LAN Windows (Windows 7, 8 or 10), Citrix Metaframe and Windows
Terminal Services, TCP/IP functionality for use with other programs.

• PC with a 1.5-2 GHz processor or networked personal computers

• 10 MB free on your hard disk (in addition to 700 MB required for the
PC*MILER|Rail database)

• 512 MB RAM required, 1 GB recommended for standard desktop

• A development system. Interface definitions for Borland C++ 5.0, Visual
C++, and Visual Basic 3.0 are currently supported, although many other
systems can also utilize the DLL.

• A copy of Microsoft Excel to use PC*MILER|Rail spreadsheet functions

• An installation of PC*MILER|Rail Version 22. PC*MILER|Rail-Connect
does not include the PC*MILER|Rail rail database which must be purchased
separately. Note that PC*MILER|Rail-Connect will not work with versions of
PC*RAIL for DOS.

2.2 Installing PC*MILER|Rail-Connect

PC*MILER|Rail-Connect is an add-on product that can be installed when you
install PC*MILER|Rail or at a later time.

See section 2.3 below if you already have a base installation of PC*MILER|Rail
22 and are adding Connect.

To install PC*MILER|Rail including the Connect add-on, see the
PC*MILER|Rail User’s Guide or Getting Started Guide for complete instructions
for a single user (non-network) or network base product installation.

2 C
ha

pt
er

 PC*MILER|Rail-Connect User’s Guide 5

2.3 Adding Connect to a PC*MILER|Rail Installation

If you are purchasing and installing the Connect module after PC*MILER|Rail
has already been installed, follow the steps below.

First, call PC*MILER Sales at 800.377.6453 (or 1.609.683.0220 outside of the
U.S.), 9:00am-5:00 pm EST, Monday-Friday to purchase the product and obtain a
new Product Key Code to license and install the new solution(s).

Once you receive the new product key code, follow the instructions below for a
single user or multi-user workstation.

SINGLE USER AND MULTI-USER SERVER INSTALLATION

1. Go to the Windows Start menu > Programs (or All Programs) >
PCMILER Rail 22 > License Status.

2. In the PC*MILER License Tool window, click Add License.

3. In the PC*MILER Product Activation window, enter the product key for the
purchased component(s) and click Add License.

4. When prompted, enter your Email Address.

5. Click Activate.

6. When the activation process is complete, you will see the message “License
Activation Complete!”. Close the Product Activation window.

7. Back in the License Tool window, make sure all new and existing components
are listed under Licensed Components, then close the window.

8. To install newly added components, go to the Windows Start menu >
Control Panel > Programs and Features (or the equivalent on your system).

9. In the list of installed programs, right click “PC*MILER|Rail 22” and choose
Change.

10. In the InstallShield Wizard, choose Modify and click Next.

11. In the next screen, you will see the list of Licensed Features. All activated
features will be listed. Check that the component you are installing is
included in the list, then click Next to continue.

12. In the next screen you’ll see the Destination Folder for the installation. Click
Next to start copying files.

13. When the installation is complete, click Finish.

 PC*MILER|Rail-Connect User’s Guide 6

MULTI-USER INSTALLATION, FROM A WORKSTATION

1. Go to the workstation.

2. Browse to the shared …\PCRWIN22\network folder on the server.

3. Run the setup.exe and choose Modify.

4. Follow through with the rest of the installation (steps 10-13 above).

2.4 Technical Support Options

ALK Technologies offers free technical support to all users of PC*MILER|Rail
and related products. If you're having a problem with the software, please check
to see if the answer to your problem is in this User’s Guide before calling. If you
have any questions or problems with the software that cannot be resolved using
this User’s Guide, contact ALK Technologies.

Hours: 8:00am - 5:00pm, Mon-Fri, Eastern Standard Time

Phone: 1.800.377.6453, ext. 2 or 1.609.683.0220, ext. 2

Email: pcmsupport@alk.com or from within the PC*MILER|Rail user
insterface select the Help tab > Email Technical Support and
follow the instructions provided. If you have any supporting
material, click Attach File and browse for the file(s) to attach.
Attachments of supporting documentation can be up to 10 MB.
When ready, click Send. ALK's technical support team will
send a confirmation email to the email entered in the "Enter
your email here" field when it is received.

Please include your Product Key Code and product version
number (e.g. 22.0.1) in all correspondence. To find this
information, go to the Help tab > About.

Fax: 1.609.252.8108 ATTN: PC*MILER|Rail Technical Support

Web Site: www.pcmiler.com (click Support > PC*MILER|Rail)

 Chapter 2: Getting Started 7

mailto:pcmsupport@alk.com
http://www.pcmiler.com/

2.5 User Guides

NOTE: You must have Adobe Acrobat Reader on your computer to properly
view the PDF user guides for PC*MILER|Rail products. (Using another PDF
reader may cause faulty pagination or other problems.) If you do not have this
program installed already, a free copy can be downloaded from www.adobe.com.

To make Adobe Reader your default reader, from within the Adobe Reader
application select the Edit menu > Preferences > General and click Select Default
PDF Handler. Select Adobe Reader from the drop-down, and click Apply then
OK to close the Preferences dialog.

To access the user guide for any PC*MILER|Rail product, click the Windows
Start button > All Programs (or the equivalent on your system) > PCMILER
Rail 22 > User Guides and select one of the .pdf files.

2.6 Licensing

The PC*MILER|Rail-Connect installation increases your licenses of the
PC*MILER|Rail database to two concurrent accesses. This means that you can
run a copy of PC*MILER|Rail together with one Connect client application at the
same time. Within each client application, the server allows up to eight open
routes at a time.

You can connect more client applications by purchasing additional database
licenses from ALK (multi-user licenses). If you plan to connect many users to a
network version of the PC*MILER|Rail database, ALK has attractive pricing for
LAN versions.

2.7 Applications That Use the PC*MILER|Rail-Connect DLL

Purchasing this DLL does not entitle you to redistribute any portions of this
product. You may NOT redistribute ALK’s rail database, source code, interface
definitions, Excel Add-In, or the PC*MILER|Rail-Connect DLL. Please read the
PC*MILER Product Line End-User License Agreement for details.

Your clients must purchase additional versions of the PC*MILER|Rail database
and PC*MILER|Rail-Connect engine directly from ALK (our sales
representatives can be reached at 1-800-377-MILE).

 PC*MILER|Rail-Connect User’s Guide 8

Basic Concepts

This chapter provides a brief description of the concepts and features needed to
use the PC*MILER|Rail-Connect DLL.

3.1 Server, Trips and Mapping

PC*MILER|Rail-Connect has two basic components: trips and mapping.

The trip portion of the server is the engine that handles trip management, mileage
calculation, and report generation. A server trip is used by opening a connection
to the server and requesting a new trip. You must close the server before your
application exits or Windows won’t free the resources used by the DLL, nor will
it unlock the current license. But do not repeatedly open and close the server.
Open the server on startup and close the server on exit. Remember, you won't be
able to rerun your application if you don’t close down the server when your
application exits.

Trips are collections of stops, options and reports. A trip is created by asking
the server for a new trip ID, then the trip is set up with a list of stops and new
options. You can then calculate the trip’s route and mileage, and extract any of
the trip’s PC*MILER|Rail reports.

Mapping is handled similarly; a connection to the server is initialized and a map
window is requested. Users can subsequently calculate trips and tell the server to
draw calculated trips in the map window. The map window can also draw icons
(“pins”) and lines at given points (as identified by a station and state). Mapping
is discussed in more detail later in this manual.

The DLL also includes a set of simplified functions for calculating distances
between an origin and a destination without any stops. These functions make it
easy to calculate miles without managing trips from your application. An example
of this, the simplest use of the PCRSRV32.DLL, is:

1. Start the server.

2. Calculate the miles from point A to point B.

3. Repeat with as many origin-destination pairs as you want.

4. Shut down the server.

3 C
ha

pt
er

 PC*MILER|Rail-Connect User’s Guide 9

The DLL can also be used to manage multiple trips and different options for each
trip. The following scenario illustrates how a user might obtain Practical and
Shortest miles for a trip with four stops:

1. Open a connection to the server.

2. Create a new trip.

3. Modify the trip’s options to use the SHORTEST routing calculation.

4. Add four stops to the trip’s route.

5. Calculate the trip’s route and mileage.

6. Extract the report and display it in your own application.

7. Modify the trip’s options again to use PRACTICAL miles.

8. Recalculate the trip’s route with the new options.

9. Delete the trip.

10. Close the server down when your application exits. Do not repeatedly
open and close the connection within your application.

3.2 Stops

The stops you add to a trip are simply freight stations on the PC*MILER|Rail rail
network. Places can be identified by station-state names, standard point location
codes (SPLCs), railroad freight station accounting codes (FSACs), 3-3-3 codes
(ERPCs), or junction codes (Rule 260s).

The DLL has functions for validating place names and matching partial names to
places on the PC*MILER|Rail network. For example, you can use the DLL to
return a list of place names that match ‘HOU* TX’ or all SPLC codes that start
with ‘380*’. When adding a stop to a trip, the DLL chooses the first match if
many matching cities exist. For example, adding the stop ‘HOU* TX’ is valid: the
DLL will use ‘Houston TX’, the first in its list of valid matches.

Please note that station/state entries should NOT have commas between station
and state. PC*MILER|Rail always assumes that the last two letters of a
station/state entry are the state/province/estado abbreviation, even without spaces.
For example, the station name ‘HOUSTONTX’ and ‘HOUSTON TX’ are valid
names, while ‘HOUSTON, TX’ is not.

If you want the user to be able to enter commas, your application should strip out
all commas in the entered names before calling the DLL. Your application can
simply strip ALL commas out of the place names because commas never appear
in PC*MILER|Rail place names.

PC*MILER|Rail-Connect place names are limited to 20 characters for the station
name plus 2 characters for the state/province/estado abbreviation.

 PC*MILER|Rail-Connect User’s Guide 10

3.3 Reports

There are six reports that can be generated by the server. These are the same
reports available through the PC*MILER|Rail user interface. The DLL allows
easy, line by line extraction of reports in tab-delimited format. Each line can then
be added to a spreadsheet or grid control from your application.

Available reports include:

• Detailed Route Report (D). This report shows a detailed list of stations
and/or cities from the trip’s origin to its destination.

• Key Station Report (K). This is a less detailed version of the above
report that includes user-specified stops and ‘key’ cities along the route.

• Detailed Geocode Report (G). Includes the same information as the
Detailed Report, but also lists geographic codes for each stop.

NOTE: Mileage breakdowns of the trip by state and railroad are
appended to the end of each of the above reports.

3.4 Trip Options

Each trip has certain options that affect the way the server routes over the rail
network and the appearance of the reports. Users may also choose between
kilometers and miles for distance reporting.

The following options are modifiable via function calls:

Routing Formula. The engine uses six different algorithms to calculate a route:

• Practical (P) routings simulate the most likely movements of general
merchandise train traffic. Main lines are preferred to branch lines. A
Practical route can sometimes be more circuitous than the shortest
possible route. Practical is the default routing formula.

• Shortest (S) route calculations find the rail route with the least distance
between the stops. In the Single Route entry mode, the shortest path
within the railroad is determined for each segment. In AutoRouter, the
shortest path across all North American railroads is calculated,
irrespective of origin and destination railroad user choices.

• Intermodal (I), Coal/Bulk (C), or Auto Racks (A) may be used to
determine the exceptional routings that these types of trains sometimes
require.

• Fuel Surcharge (F) routing is essentially a combination of the Shortest
and Practical route formulas (because some railroads use Shortest mileage
and some use Practical mileage when figuring their fuel surcharges). It

 Chapter 3: Basic Concepts 11

provides mileage suitable for calculating fuel surcharges in conformance
with the Surface Transportation Board ruling STB Ex Parte No. 661.

Routing Method. Users may direct the routing engine to route over any railroad
in the same family as the carrier specified by the user. Valid inputs are: F for
Familized, N for Non-Familized. Familized is the default setting.

NOTE: In Version 22, all standard routes are Non-Familized and all AutoRoutes
are Familized. Fuel Surcharge routing is not available for AutoRoutes and the
Non-Familized setting should be used with this route formula.

Routing Type. Routing can be either Interactive (equivalent to Standard single
route mode in the PC*MILER|Rail user interface – the user specifies junctions or
points), or AutoRoute (the routing engine will determine the carrier junctions for
you, given the routing formula). For more on these two types of routing, see the
PC*MILER|Rail User’s Guide. Valid inputs are: I for Interactive, A for
AutoRoute. Interactive is the default setting.

Units. Distances can be reported either in miles (the default) or kilometers.

Intermodal-Only Stations: Stations that are intermodal-only can be included or
excluded on a Practical route. I for Include (the default), E for Exclude.

Include/Exclude Amtrak: When using the AutoRouter, this setting determines
if Amtrak routes will be generated. E for Exclude (the default), I for Include.

3.5 Log File Setup

PC*MILER|Rail-Connect includes a logging feature to help users find problems
easily. The log file that is generated documents API usage, including errors. The
path and other options related to the log file can be set in the PCRSRV.INI file,
usually located in C:\Windows (or its equivalent on your PC).

When you first open the INI file, you will see that the file contains only one line
(the default DLL path). To turn logging on, you will need to add lines as in the
example below (but with your own preferences set).

[Default]
DLLPath=C:\ALK Technologies\PCRWIN22\

[Logging]
Enable=1
Append=0
Detail=0
File=C:\pcrsrv.log

 PC*MILER|Rail-Connect User’s Guide 12

Logging settings are:

KEY Valid Values Description
------ ---------------- ---------------
Enable 0 or 1 Should log files be generated (1) or not (0).
 Default = 0

Append 0 or 1 Append to old file (1) or overwrite (0).
 Default = 0

Detail 0 or 1 Log all APIs (1) or exclude selected APIs (0).
 Default = 0
 (See below for which APIs are excluded if set to 0.)

File Path/file name of log file. Any path and filename
 may be specified.

When Detail=1, the log file will usually be very long. APIs not included when
Detail=0 are the following:

PCRSGetRptLine()
PCRSGetARRptLine()
PCRSGetAutoRouteMiles()
PCRSGetAutoRouteLine()
PCRSGetRouteLegInfo()
PCRSGetARLegInfo()
PCRSGetGeoMatch()
PCRSGetRouteLegInfo()
PCRSGetNumARLegs()
Num2Name()

3.6 The Connect Tester

PC*MILER|Rail-Connect includes a tester that runs many of the more commonly-
used API’s. To access the Connect or Mapping tester, go to the Windows Start
menu > All Programs (or the equivalent on your system) > PCMILER Rail 22 >
Connect.

The Connect tester runs automatically when it is opened and outputs two files into
the App folder of the PC*MILER|Rail installation (usually C:\ALK Technologies\
PCRWIN22\App): pcrstest.log describes the test cases that should run, and
pcrsrv22.log logs the progress of the tester program.

 Chapter 3: Basic Concepts 13

Using PC*MILER|Rail-Connect from ‘C’

This chapter explains how to create applications that use the PCRSRV32.DLL in
‘C’. It also details how to start up and shut down the server, create and configure
trips, calculate routes, and extract report data from ‘C’. While this chapter is
geared to ‘C’ programmers, it should apply to any language that can call DLLs
using the Pascal calling convention.

Function references for all the subroutines described in this chapter can be found
in Appendix A. Please have a look at the sample code included with the DLL for a
detailed example of how to use the DLL. Sample code is in the
Connect\Test_Sample folders of the PC*MILER|Rail installation, in the
files PcrsTestSample.cpp and pcrstest.h (routing) and
pcrgtest.cpp (mapping).

NOTE ON DEPRECATED FUNCTIONS: The Connect functions below have
been deprecated in Version 22. They will return a fixed default value and
generate a log statement message that they are non-functional.

PCRSSetDebug
PCRSGetDebug
PCRSSendAboutInfo
PCRSSetReceiver
PCRSSetCallBack

4.1 Building a PC*MILER|Rail-Connect Client Application

Building an application with PCRSRV32.DLL is similar to using other DLLs
from your C programs. You’ll need to specify in your project the directories that
contain header and library files for PC*MILER|Rail-Connect. If you installed
PC*MILER|Rail 22 in C:\ALK Technologies\PCRWIN22, the
PCRSRV32.DLL, headers, and the libraries will be in C:\ALK
Technologies\PCRWIN22\Connect. Sample code is available in the
Connect_Test_Sample and Mapping_Test_Sample folders.

Your application must include PCRSAPI.H in all modules that use subroutines in
PCRSRV32.DLL – this is the header file for the server API (application
programming interface) found in the PCRWIN22\Connect\
Connect_Test_Sample folder.

To call functions in the server, you must link the application with the supplied
import library.

4 C
ha

pt
er

 PC*MILER|Rail-Connect User’s Guide 14

To link with the server’s import library, add PCRSRV32.LIB to your project.
The way you do this depends on the programming environment you use. From the
Borland IDE, you insert PCRSRV32.LIB in your project from the project
window.

To add the imported functions to your module definition file, open your
project’s DEF file and the file PCRSAPI.H, and copy the function names that
your program will use to your project’s DEF file.

4.2 Starting and Stopping the Server

Before your application can use any server functions, it must connect to and
initialize the DLL. After it finishes, it must shut down the server connection. You
must close the server before your application exits or Windows won’t free the
resources used by the DLL, nor will it unlock the current license. But do not
repeatedly open and close the server. Open the server on startup and close
the server on exit.

A note on error message reporting from PC*MILER|Rail-Connect: All
functions in the server API return the status of the called function via a Win32
return type of HRESULT, which is a 4 byte integer (a.k.a. long) in the current
Windows implementation. A return value of zero indicates success, a return value
less than zero indicates an error, with the return value being the error code itself.
This return value (if less than zero) can then be passed to the server utility
function PCRSGetErrorString() for a text description of the most recently
encountered server error.

The function PCRSInitSrv() will initialize the DLL, check your
PC*MILER|Rail licenses, load the PC*MILER|Rail rail database, and ready the
engine for routing calculations. PCRSInitSrv() must be called before any
other functions in the DLL, with the exception of error handling code. See section
4.13, Error Handling, for details. The prototype for the function
PCRSInitSrv() is as follows:

HRESULT PCRSInitSrv(const char *callerName, const char
*iniFile);

where callerName is the (arbitrary) name of the calling application and
iniFile is the path and name of the PCRSRV.INI file.

PCRSCleanupSrv() must be the last DLL function called when you’re
finished using the server. This function will destroy any remaining trips that you
haven’t deleted with PCRSDeleteTrip(), and unload the PC*MILER|Rail rail
database. After calling PCRSCleanupSrv(), you must call PCRSInitSrv()
again to reinitialize the DLL before calling any other functions. Here is the
prototype:

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 15

HRESULT PCRSCleanupSrv();

This is how your application should start and stop the server engine:

#define BUFLEN 256

int DemoRun()
{
 HRESULT srvRet;
 char buffer[BUFLEN];

 /* Start the server; error handling block is shown

here */
 if (0 != (srvRet = PCRSInitSrv("MyApp",

"C:\\pcrwin22\\pcrsrv.ini")))
 {
 // Server Init Error:
 if (0 > PCRSGetErrorString(srvRet, buffer, BUFLEN,

NULL))
 printf ("Server Err: (Can’t get error string)");
 else
 printf ("Server Err: %s", buffer);
return srvRet;
 }

 /* Do other processing here. */
 /* Use the server: calculate trips, etc.... */

 /* Shut down the server */
 if (0 != (srvRet = PCRSCleanupSrv()))
 {
 // Server Shutdown Error:
 <error handling block, as above>
 }
 return 0;
}

For efficiency, you should start the server when your application initializes and
shut down the server when your application exits, rather than every time you want
to compute a route. Also, you should only need to open one connection per
application, as each connection can manage up to eight simultaneous trips.

Once the server is initialized, you can then calculate distances, create trips, and
generate reports, or create a map window and perform mapping. For examples on
mapping, see the mapping chapter later in this manual.

 PC*MILER|Rail-Connect User’s Guide 16

4.3 Running Simple Routes

The simplest way to use the server once it is initialized is to calculate mileage
between two places. For example, calculating the miles between “Chicago IL”
and “Philadelphia PA”.

Here is the function that calculates the distance between two places:

HRESULT PCRSCalcTrip (Trip trip, char *orig, char
*origRR, char *origGeo, char *dest, char *destRR,
char *destGeo, long *pMiles);

Example:

if (0 != (srvRet =

 PCRSCalcTrip(myTrip, "CHICAGO IL", "NS", "C",

 "PHILADELPHIA PA", "NS", "C", &miles_tenths)))

 printf("Trip error: %d\n", srvRet);

else

{

 miles = (float) miles_tenths / 10;

 printf(buf, "CHICAGO IL to PHILADELPHIA is %3.1f
miles.", miles);

}

PCRSCalcTrip() returns the distance between orig and dest (in tenths of
miles/kms) in the pointer pMiles. Trip calculation is based on whatever route
options have been previously specified (see Changing Options below). Since the
distance is returned as tenths of miles, your application should divide the result by
10 to obtain a floating point representation of miles. The RR fields in the
function calls take 4-char SCAC codes such as ‘CN’ and ‘BNSF’. The
orig/destGeo fields denote how the station name is entered (SPLC, FSAC, 3-3-3,
or R260).

Before calculating distances, you can validate your place names using the
function PCRSGeoLookup(). It will place the number of matching places in the
PC*MILER|Rail database in the ‘numMatches’ variable passed in. The function
returns 0 on success, or a negative error code otherwise (as do all the DLL
functions).

HRESULT PCRSGeoLookup(Trip trip, char *placeName, char
*placeCode, char *RR, int *numMatches);

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 17

The following example shows how to calculate the distance between “Chicago
IL” and “Philadelphia PA” on Norfolk Southern (NS).

void RunRoute()
{
 long tmiles;
 Trip myTrip;
 int matches;

 /* Note: Server must already be initialized. */
 // Create a new trip:
 if (0 != (srvRet = PCRSNewTrip (&myTrip)))
 {
 // Handle Trip Creation Error here
 }

 /* All subsequent err handling blocks have been
 omitted for brevity */

 // Optional: Set routing options
 srvRet = PCRSSetRouteFormula (myTrip, "P"); //
Practical
 srvRet = PCRSSetRouteMethod (myTrip, "N"); // Non-
Familized
 srvRet = PCRSSetRouteType (myTrip, "I"); //
Interactive

 /* Calculate the same trip using shortest distance */
 srvRet = PCRSSetRouteFormula (myTrip, "S"); //
Shortest
 srvRet = PCRSCalcTrip (myTrip, "Chicago IL", "NS",
 "C", "Philadelphia PA", "NS", "C", &tmiles);
 printf("Shortest miles: %f\n", tmiles / 10.0);

/* Calculate the same trip using Coal/Bulk routing */
 srvRet = PCRSSetRouteFormula (myTrip, "C"); //
Coal/Bulk
 srvRet = PCRSCalcTrip (myTrip, "Chicago IL", "NS",
 "C", "Philadelphia PA", "NS", "C", &tmiles);
 printf("Bulk miles: %f\n", tmiles / 10.0);

 /* Calc Practical miles between Seattle / Philly: */
 /* This determines junctions between RRs and chooses */
 /* route w/ least non-family jcns + lowest miles */
 srvRet = PCRSSetRouteFormula (myTrip, "P");
 srvRet = PCRSSetRouteType (myTrip, "A"); //
AutoRouting
 srvRet = PCRSCalcTrip (myTrip, "Seattle WA", "BNSF",
 "C", "Philadelphia PA", "CSXT", "C",
&tmiles);

 PC*MILER|Rail-Connect User’s Guide 18

 printf("Seattle->Philly miles: %f\n", tmiles /
10.0);

/* Check for place name matches for Seattle WA on BNSF */
 srvRet = PCRSGeoLookup (myTrip, "Seattle WA", "C",
 "BNSF", &matches);
 printf("Matching places in PC*MILER|Rail database:
%d\n",
 matches);

 }

4.4 Building a Trip

Another way to use the server is to build many complex trips with multiple stops
and various options. For example, you could generate two trips from New York to
San Diego via Chicago and Phoenix, using PRACTICAL routing for one and
SHORTEST for the other, and then compare them.

To use a trip, you must first ask the server for a new trip (see above example). A
Trip identifier is defined as a four byte pointer:

HRESULT PCRSNewTrip (Trip *tripID);

PCRSNewTrip() places a handle to the new trip in the pointer argument passed
in (myTrip). The return code is the same as all other DLL functions (used for
error handling). You can create up to eight simultaneous trips.

When finished with the trip, you should call PCRSDeleteTrip() to clean up
the trip’s memory. If you don’t, you may not be able to create more trips if you
have eight trips open at once.

HRESULT PCRSDeleteTrip(Trip tripID);

PCRSDeleteTrip() returns a negative error code on error.

Once the trip is created, you can do simple calculations with a trip, or more
complex ones. PCRSCalcTrip remains an all-in-one function while complex,
multi-stop trips can be built using PCRSAddStop / PCRSDeleteStop and
calculated using PCRSCalculate (see the function reference at the end of this
document).

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 19

4.5 Managing Stops

PC*MILER|Rail-Connect can calculate routes with many stops. When the client
application adds stops to a trip, the DLL tries to ‘geocode’ the input place (station
name/state, SPLC, etc) to the PC*MILER|Rail rail database. PC*MILER|Rail-
Connect station names are limited to 20 characters for the station name plus 2
characters for the state abbreviation. Geographic codes can be 6 digits for a
SPLC or 5 digits for FSACs (with leading zeros), 9 characters for ERPCs, and 5
characters for Rule260s.

Valid stops should NOT have commas between station and state. PC*MILER|Rail
always assumes that the last two letters of a place name are the state
abbreviations, even without spaces. For example, the place name
‘HOUSTONTX’ and ‘HOUSTON TX’ are valid names, while ‘HOUSTON, TX’
is not.

The following functions are used to manage a trip’s list of stops:

HRESULT PCRSAddStop(Trip trip, char *stopName, char
*rrIn, char *geoChar);

HRESULT PCRSDeleteStop(Trip trip, int which);

HRESULT PCRSGetNumStops(Trip trip, int pNumStops);

HRESULT PCRSClearStops(Trip trip);

HRESULT PCRSGetStop(Trip trip, int which, char *buffer,
int bufSize, int NumChars, char *rr);

PCRSAddStop() appends a stop-off in the stop list (or origin stop if list is
empty). Places will be geocoded and the first match will be used in the event that
more than one match exists (via PCRSGeoLookup()). PCRSAddStop()
returns the number of matching cities (or 0 if no cities match), and -1 on error.

NOTE: If the stop is invalid, it was not added to the trip’s list. This means that
the trip will recalculate, but the mileage and the route will not include the invalid
stop-off!

PCRSGetStop() will put a stop name into the supplied buffer. Use which
to index into the list of stops. Stop number 0 is the origin. The resulting string will
be a NULL terminated string, and could be as long as 23 bytes. The input
buffer should be at least 24 bytes long in order to contain the entire string. If
bufSize is less than 24 bytes, then bufSize-1 characters will be copied into
buffer. PCRSGetStop() places the number of characters copied into the
buffer into the given pointer ‘numChars’.

 PC*MILER|Rail-Connect User’s Guide 20

PCRSGetNumStops() is used to get the total number of stops currently in the
trip’s stop list, including origin and destination.

PCRSClearStops() removes all stops from the stop list.

Refer to the sample functions shipped with the DLL for more coding examples on
DLL usage.

4.6 Looking Up Place Names and Railroads (Geocoding)

Several functions are included in PC*MILER|Rail-Connect which support
looking up places and railroads. They are listed and described below.

HRESULT PCRSGeoLookup(Trip trip, char *geoName, char

*geoChar, char *rrIn, int *numMatches);

HRESULT PCRSGetNumGeoMatches(Trip trip, int
*numMatches);

HRESULT PCRSGetGeoMatch(Trip trip, int which, char
*buffer, int bufSize,int *pNumChars);

HRESULT PCRSRRLookup(Trip trip, char
*geoName, char *geoChar, int
*numMatches);

HRESULT PCRSGetRRMatch(Trip trip, int which,
char *buffer, int bufSize, int
*pNumChars);

HRESULT PCRSJunctionLookup(Trip tripID, char
*rrin, char *rrOut, int *numMatches);

HRESULT PCRSGetJunctionMatch(Trip tripID, int
which, char *buffer, int bufSize, int
pNumChars);

HRESULT PCRSRRName2Num (char *rr, short
*pRRNum);

HRESULT PCRSRRNum2Name (short rrNum, char
*rrBuf);

HRESULT PCRSConvertGeoCode(char *geoName, char
*geoCharFrom, char *geoCharTo, char *rr, char
*buffer, int bufsize, int *pNumChars);

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 21

The first function, PCRSGeoLookup(), finds a list of matching places and
returns how many match your input. You can then check each item in the list
yourself for a matching name, or pop up the list in your own list box. Input names
can contain the meta-character ‘*’ to force the server to do partial matches. For
example, ‘HOU* TX’ will return a list of all places that match the partial string
‘HOU’ in the state of New Jersey. The railroad (rrIn) is an optional field to allow
users to further narrow the search to stations on that specific rail carrier. The
DLL will ignore this field if it is NULL.

Input names can be any of the aforementioned geocode types (station name/state,
SPLC, FSAC, ERPC, Rule260). The argument geoChar denotes which of these
types is being given (S=SPLC, E=ERPC, C=City/State (station name), F=FSAC,
R=Rule260). The number of matches found is returned in the given pointer
‘pNumChars’. Note that these input places can be ‘mapped’ to other places in the
PC*MILER|Rail network via overrides, should this be necessary based on the
input data (see section 4.10, Managing Overrides, below).

Once you’ve seeded the trip with matching cities, use PCRSGetGeoMatch() to
retrieve each matching place. Pass the index of the desired match and a
buffer to store the information in. The name stored in the buffer (first 22 chars)
is the place name as PC*MILER|Rail knows it and should be the name passed to
PCRSAddStop(). PC*MILER|Rail names are the 22-character station/state
names previously discussed, including the NULL terminator. Note that the buffer
should be long enough to contain the entire name. Additional information will be
included in the buffer (such as SPLC and FSAC) where possible.

The following is a code sample for Geocode lookups:

#define BUFLEN 25
char buffer[BUFLEN];
int matches, numChars;
HRESULT srvRet;

/* Lookup all cities that match */

srvRet = PCRSGeoLookup(myTrip, "HOU* TX", "C", NULL,
&matches);
printf ("%d matching cities to 'HOU* TX'\n", matches);

/* Show all the matching cities. Note: You could use
variable*/

for (i = 0; i < matches; i++)
{
 PCRSGetGeoMatch(trip, i, buffer, BUFLEN, &numChars);
 printf ("[%s]\n", buffer);
}

 PC*MILER|Rail-Connect User’s Guide 22

The Lookup functions work like the Geocoding functions described above.
PCRSRRLookup()and PCRSJunctionLookup() return lists of matching
railroads and junctions respectively, and return how many match your input. The
number of matches found is returned in the given pointer numMatches. Then,
you can use PCRSGetRRMatch() or PCRSGetJunctionMatch to retrieve
each matching railroad or junction. Pass the index of the desired match and a
buffer to store the information.

PCRSConvertGeoCode() is a geocode conversion function. The argument
geoCharFrom and geoCharTo are one of the following: (S=SPLC, E=ERPC,
C=City/State (station name), F=FSAC, R=Rule260).

The following is a code sample of PCRSConvertGeoCode(). Note that RR
information is required to and from the FSAC code conversion.

#define BUFLEN 256

char buffer[BUFLEN];

if (0 == (srvRet = PCRSConvertGeoCode("384188", "S",
"C", "", buffer, BUFLEN, NULL)))

{

 printf (buf, "Conversion: \"384188\" (SPLC -->
Station/ST)\n");

 printf (buf, "Result: %s\n", buffer);

}

/* ERPC code needs to be followed by state code with or
without a blank */

if (0 == (srvRet = PCRSConvertGeoCode("GRUMBLER NT",
"E", "C", "", buffer, BUFLEN, NULL)))

{

 printf (buf, "Conversion: \"GRUMBLER NT\" (ERPC -->
Station/ST)\n");

 printf (buf, " Result : %s\n", buffer);

}

/* RR is required to and from the FSAC code conversion
*/

if (0 == (srvRet = PCRSConvertGeoCode("ABEE IN", "C",
"F", "EVWR", buffer, BUFLEN, NULL)))

{

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 23

 printf (buf, "Conversion: \"ABEE IN\" (Station/ST --
> FSAC, RR: EVWR)\n");

 printf (buf, "Result: %s\n", buffer);

}

if (0 == (srvRet = PCRSConvertGeoCode("ADA", "R", "S",
"", buffer, BUFLEN, NULL)))

{

 printf (buf, "Conversion: \"ADA\" (R260 -->
SPLC)\n");

 printf (buf, "Result: %s\n", buffer);

}

The output from this program is:

Conversion: "384188" (SPLC --> Station/ST)

Result: LORENZO IL

Conversion: "GRUMBLER NT" (ERPC --> Station/ST)

Result: GRUMBLER NT

Conversion: "ABEE IN" (Station/ST --> FSAC, RR: EVWR)

Result: 70328

Conversion: "ADA" (R260 --> SPLC)

Result: 628240

4.7 Requesting Lat/Long Coordinates Along a Route

The following function returns a list of latitude/longitude coordinates along a
route line in sequential order, starting at the origin and ending at the destination.
When the sequence of lat/longs has been obtained in Connect, the user can
overlay the PC*MILER|Rail route line onto the mapping product of choice.

This API does not have any limit on the number of legs in the input trip. The
coordinates list will be returned for all legs of the multi-leg trip.

HRESULT PCRSLatLongsEnRoute(Trip trip, double* latlong,

long numPairs);

Trip refers to the trip setup through PC*MILER|Rail-Connect, latlong is the
list of lat/long pairs, and numPairs is the number of lat/long pairs returned in
the list.

 PC*MILER|Rail-Connect User’s Guide 24

This function is meant to be used in a two-call sequence:

1) When calling the API initially, you are instructing the PC*MILER|Rail

software to go out and gather the number of coordinate pairs. The return value
of this call will be the number of lat/long pairs. The initial call will look
something like this (below). It is very important to pass in a NULL pointer to
the second argument and zero to the third argument. This tells the
PC*MILER|Rail software to go out and gather the count of pairs. Later, you
will make the call again to get the actual data. If an error occurs, your return
value will be a negative number mapping to a PC*MILER|Rail error code.

numPairs = PCRSLatLongsEnRoute(myTrip, NULL, 0);

2) After making your initial API request, you need to allocate memory for the

array of Lat/Long Coordinates. So, if the API returns 10 for the number of
pairs, you will need a “C” statement similar to this:

double* coordArray = new double[2*numPairs];

3) After allocating memory, you are now ready to make your final request to get

the array of lat/longs:

srvRet = PCRSLatLongsEnRoute(myTrip, coordArray,
numPairs);

4.8 Getting a Mileage Breakdown by Railroad and State

The functions described in this section were added in PC*MILER|Rail-Connect
Version 19. They return a list of unique combinations representing the mileage
breakdown by railroad and state for a given trip.
PCRSGetAllStateRRMileage returns a list of structures, while
PCRSGetAllStateRRMileage1 returns a list in text format delimited by
pipes.

These APIs are useful for obtaining a mileage summary for each state that the
route traverses. Users are encouraged to use these APIs instead of the existing
PCRSGetStateRRMiles function which requires the user to know which
state/railroad combinations to use as the input. Both functions are described
below.

HRESULT PCRSGetAllStateRRMileage(Trip trip,

MileageStruct* combinationArray, long
numCombinations);

In the above function, Trip refers to the trip setup through PC*MILER|Rail-
Connect, combinationArray is the output list containing MileageStruct

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 25

structures, and numCombinations is the number of structures returned in the
array.

This API will return a list of structures with each structure containing the
following:

1. State abbreviation – char*
2. State Index - int
3. Railroad Abbreviation – char*
4. Railroad Number - short
5. Miles for the above State/RR combination - long

This API is meant to be used in a two-call sequence:

1) When calling the API initially, you are instructing the PC*MILER|Rail

software to go out and gather the number of records combinations (state,
railroad and miles) that exist for your trip. The return value of this call will be
the number of combinations. The initial call will look something like this
(below). It is very important to pass in a NULL pointer to the second
argument. Also pass in zero as the third argument. This tells PC*MILER|Rail
to obtain the number of combinations. Later, you will make the call again to
get the actual data. If an error occurs, your return value will be a negative
number mapping to a PC*MILER|Rail error code.

numCombinations = PCRSGetAllStateRRMileage(trip,
NULL, 0);

2) After making your initial request, you need to allocate memory for the array

of Mileage structures. So, if the API returns 10 for the number of
combinations, you will need a “C” statement similar to this:

MileageStruct* mileageArray = new MileageStruct[10];

3) After allocating memory, you are now ready to make your final request to get

the array of mileage structures. Notice that you are passing back in the
number of combinations to retrieve in the third argument:

srvRet = PCRSGetAllStateRRMileage(myTrip,
mileageArray, numCombinations);

HRESULT PCRSGetAllStateRRMileage1(Trip trip, char*
mileageBuffer, long bufferSize);

In the above function, Trip refers to the trip set up through PC*MILER|Rail-
Connect, mileageBuffer is the output list of unique combinations of railroad,
state and miles for a given trip, and bufferSize is the length of the
mileageBuffer.

 PC*MILER|Rail-Connect User’s Guide 26

This API will return a list of unique combinations delimited by the double pipe
symbol “||”. Within each item or field in the list, the delimiter is a single pipe “|”.
This entire list will be stuffed into your outgoing char buffer
(mileageBuffer). See small snippet below where we have a list of 2 items.
Take special note of how the fields are ordered within an item in the list.

||State Abbrev|State Index|RR Abbrev|RR Num|Miles
||KY|32|BNSF|712|143.6
||PA|47|NS|312|156.2

This API is meant to be used in a two-call sequence:

1) When calling the API initially, you are instructing the RAIL software to go

out and gather how many record combinations (state, railroad and miles) exist
for your trip. The return value of this call will be the size of the buffer. The
initial call will look something like this (see below). It is very important to
pass in a NULL pointer to the second argument. Also pass in zero as the third
argument. This tells the RAIL software to go out and determine the buffer
size. Later , we will make the call again to get the actual data. If an error
occurs, your return value will be a negative number mapping to a RAIL error
code.

bufferSize = PCRSGetAllStateRRMileage1(trip, NULL, 0);

2) After making your initial API request, you need to allocate memory for the
array. You will need a “C” statement similar to this:

char *mileageBuffer = new char[bufferSize];

3) After allocating memory, you are now ready to make your final request to get
the return buffer of mileage. Notice you are passing back in the mileage buffer
size to the PC*MILER|Rail software in the third argument:

srvRet = PCRSGetAllStateRRMileage1(myTrip,
mileageBuffer, bufferSize);

4.9 Changing Options

The following functions affect the trip’s routing calculation:

HRESULT PCRSSetRouteFormula (Trip trip, char
*newParam);

HRESULT PCRSSetRouteMethod (Trip trip, char *newParam);

HRESULT PCRSSetRouteType (Trip trip, char *newParam);

HRESULT PCRSSetUnitsMiles (Trip trip);

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 27

HRESULT PCRSSetUnitsKilometers (Trip trip);

HRESULT PCRSSetIncNonStationRR (Trip tripID, char
*newParam);

HRESULT PCRSSetIntermodalOnlyIncEx (Trip tripID, char
*newParam);

HRESULT PCRSSetIncAMTK (Trip tripID, char *newParam);

PCRSSetRouteFormula allows users to choose between PRACTICAL (P),
SHORTEST (S) path, INTERMODAL (I), COAL/BULK (C), AUTO RACKS
(A), and FUEL SURCHARGE (F) style routing. Default = P.

PCRSSetRouteMethod allows users to choose FAMILIZED (F) versus
NON-FAMILIZED (N) routing (i.e. determines if moves over railroad family
members should occur as if they were a movement over the specified railroad).
Default = F.

PCRSSetRouteType allows users to choose between INTERACTIVE (I) and
AUTOROUTE (A) type routing. In an Interactive route, consecutive stops must
be reachable on the same railroad (or family member) or be a junction between
two railroads at a given location. AutoRouting will let the PC*MILER|Rail
routing engine determine junctions between stops if necessary. This is similar to
Single Route and AutoRoute entry modes in the main PC*MILER|Rail
application. Default = I.

PCRSSetUnitMiles() tells the DLL to return MILES as the distance unit for
all routing calculations. Default = MILES.

PCRSSetUnitKilometers() tells the DLL to return KILOMETERS as the
distance unit for all routing calculations. Default = MILES (PCRSSetUnitMiles).

PCRSSetIncNonStationRR() allows AutoRouter users to choose between
EXCLUDING (E) and INCLUDING (I) railroads that do not have active freight
stations at a location. Default = I.

PCRSSetIntermodalOnlyIncEx() provides the option to EXCLUDE (E)
or INCLUDE (I) intermodal-only stations on a Practical route. Default = I. This
option can only be used when the routing formula for a route is Practical,
Coal/Bulk, or Auto Racks; the Exclude option cannot be used with other route
formulas.

PCRSSetIncAMTK() allows AutoRouter users to choose between
EXCLUDING (E) and INCLUDING (I) Amtrack from their list of AutoRoutes.
Default = E.

 PC*MILER|Rail-Connect User’s Guide 28

4.10 Managing Overrides

NOTE: For a more detailed and comprehensive description of how to use
override files, see the PC*MILER|Rail User’s Guide. Go to the Windows Start
menu > All Programs > PCMILER Rail 22 > PCMILER Rail User’s Guide.

The PC*MILER|Rail-Connect DLL supports Geocode overrides to allow users to
equate a place name or code with another in the PC*MILER|Rail network. If you
are experiencing recurring errors caused by frequently occurring data input that
PC*MILER|Rail can’t interpret, this data may be translated using the SCAC,
SPLC, Station, and ERPC override files located in the RailNeT folder in your
PC*MILER|Rail installation.

Override files can also be used to create custom place names and to designate
avoid/favor preferences for individual junction interchanges. Refer to the
PC*MILER|Rail User’s Guide for details – see NOTE above.

Each file contains a number of records that are made up of the unrecognized
character string and its acceptable synonym. The files included in the installation
(sample records are shown below) should be used to correct your input files and
as the basis for adding more records.

The OVERRIDE.SCA file translates SCAC codes that are not in the
PC*MILER|Rail database:

TFM KCSM;

The OVERRIDE.SPL file translates railroad-specific SPLC codes that are not in
the PC*MILER|Rail database:

BNSF 029142 030000;
CSXT 142007 142000;

The OVERRIDE.FSC file translates railroad-specific FSAC codes that are not in
the PC*MILER|Rail database:

BNSF 99998 40303;
CSXT 99911 39185;

The OVERRIDE.ERP file matches standard Railinc/NITL spellings of cities,
with state/province/estado abbreviation, to common invalid ERPC codes sent by
the railroads (missing state is a frequent problem) as shown below:

PALMCV PALMER MA;
HAGECSXT MD HAGERSTOWMD;
SALT LAKEUT SALLAKCITUT;

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 29

The OVERRIDE.NAM file translates station names that are not in the
C*MILER|Rail database. For example:

MOOJAW SK becomes MOOSE JAW SK
YOYO IL becomes CHICAGO IL

4.11 Generating and Retrieving Reports

Once a trip’s route has been calculated, you can retrieve reports showing the
route’s information. The reports are returned in tab delimited lines which allow
easy pasting into spreadsheets, list boxes, and grids. The DLL API allows users
to retrieve the entire report body or line by line. These functions and an example
are below.

HRESULT PCRSGetRpt (Trip trip, char *rptType, char

*buffer, int bufSize, int *pBuflen);

HRESULT PCRSGetRptLine (Trip trip, char *rptType, int
rowNum, char *buffer,int bufSize, int *pBuflen);

HRESULT PCRSGetNumRptLines(Trip trip, char *rptType,
int *numLines);

HRESULT PCRSGetRptLength (Trip trip, char *rptType,
long *rptLen);

HRESULT PCRSGetStateRRMiles (Trip trip, int stIndx,
short rrNum, long*pMiles);

The call PCRSGetRpt()will place the entire report body into the buffer (up to
bufSize bytes). The rptType (“K”,”D”, or “G”) argument indicates which type
of report is desired: a Key Station, Detailed Route, or Detailed Geocode report.

As the names suggest, the Key Cities report lists each stop in the route along with
locations in the route that are marked as Key Cities (or stations) in the
PC*MILER|Rail database.

Similarly, the Detailed Route report contains the information in the Key Cities
report plus more of the smaller stations/points along the route.

The Detailed Geocode Report includes the same information as the Detailed
Report, but also lists geographic codes for each stop.

All three reports contain mileage breakdowns by state and railroad appended to
the end of the report body. (To generate a separate report containing only state
mileage, see the description of PCRSGetStateRRMiles at the end of this section,
or section 4.8 if you don’t know which state/railroad combinations to use as the
input.)

 PC*MILER|Rail-Connect User’s Guide 30

Reports can also be retrieved line by line, as shown in the following example:

/* Assume a trip has already been run via
 PCRSCalcTrip or PCRSCalculate
*/

#define BUFLEN 128
char buffer[BUFLEN];
int numLines, i;
HRESULT srvRet;

/* Error handling code (of srvRet) will be omitted
 for brevity */

/* Index lines from 0. Buffer must be > 100 char */
/* Get the KEY CITIES report
srvRet = PCRSGetNumRptLines(myTrip, "K", &numLines);

for (i=0; i < numLines; i++)
{
 srvRet = PCRSGetRptLine(myTrip, "K", i, buffer,
 BUFLEN, NULL);
 printf ("%s\n", buffer);
}

The call PCRSGetStateRRMiles returns only the trip mileage by state.
Argument values are the following:

stIndx: state index # (see Appendix E for a list of state index numbers)
rrNum: RR number
pMiles: state miles

For example:

/***
* Get miles in ALberta
*
* Initialize to args so we can later make a call to get
the railroad miles in ALberta on CPRS
**/

// Arg1 - Get the Rail Road Number for "CPRS"
srvRet = PCRSRRName2Num("CPRS", &rrNum);

// Arg 2- Alberta state index is 1
int stateIndex=1;

// Get the railroad miles in Alberta on CPRS
srvRet = PCRSGetStateRRMiles(myTrip, stateIndex, rrNum,
&tempMiles);

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 31

4.12 Switching the Map Dataset

Beginning in Version 20, PC*MILER|Rail-Connect provides three new APIs that
enable users to identify which datasets are available and to switch between them.
The new APIs are described below.

PCRSSwitchDataSet (int DataSetID)

The PCRSSwitchDataSet API enables you to dynamically switch to a
different dataset any time after your PCRSInitSrv() call and before you call
the PCRSCleanupSrv(). Before making this API call, you should call
PCRSIsUpdateAvailable(DataSetID) to verify that the dataset has
previously been downloaded and is available (see below).

The names of the four datasets that are expected to be available throughout the
year for the Version 22 release are listed in Table 1 below, along with the
DataSetID integer to use. The names below are also the names of the subfolders
containing rail data updates under your RAILNET install folder.

Table 1.
Dataset ID Dataset Name Description
0 "22.0_BASE" Base Data included in the Version 22 release

1 "22.1_UPDATE" First update of Rail data

2 "22.2_UPDATE" Second update of Rail data

3 "22.3_UPDATE" Third update of Rail data

The user must pass in a valid dataset ID (see Table 1 above for valid values). For
example, to switch to the 22.2 update, the dataset ID is the integer value of 2.
Please remember, the dynamic switch of rail data is only good for the Connect
session. Once the session closes, the use of the new dataset is lost. Once you
restart your Connect session, the default dataset (defined in the GUI) is again
loaded. Also, once you dynamically switch datasets, any existing trips you
established earlier are deleted within this API call. For example, if you try to
add a stop to a previous open trip, you will receive an error.

Table 2 below lists return values.

Table 2.
Return Value Description
0 Switching datasets was SUCCESSFUL.

PCRS_BADARG User did not pass in valid dataset value (0 thru 3).

PCRS_DATANOTAVAIL
User passed in valid dataset, but the set is not available
for data switching because it has not been downloaded.
The user should "Check for Updates" from within the

 PC*MILER|Rail-Connect User’s Guide 32

GUI to download the update.

PCRS_ERRORSWITCHINGDATA Fatal Error - Cannot switch datasets due to an error in
processing, please contact Technical Support.

PCRSIsUpdateAvailable (int DataSetID)

This API enables the user to check if a dataset is available. The user must pass in
a valid dataset ID. Before you switch datasets within a Connect Session, you
should make this API call to ensure that the set is available.

Table 1 below lists valid dataset IDs.

Table 1.
Dataset ID Dataset Name Description
0 "22.0_BASE" Base Data included in the Version 22 release

1 "22.1_UPDATE" First update of Rail data

2 "22.2_UPDATE" Second update of Rail data

3 "22.3_UPDATE" Third update of Rail data

Table 2 below lists return values.

Table 2.
Return Value Description
1 Dataset is available

0 Dataset is not available

PCRS_BADARG User did not pass in valid dataset value (0 thru 3)

PCRSGetAvailableUpdates (int *dataSet_1, int

*dataset_2, int *dataset_3)

This API enables the user to find out which updates are available. It is similar to
the PCRSIsUpdateAvailable API call that queries whether a specific
dataset is available.

Since there are three potential updates over the duration of a PC*MILER|Rail
yearly release, there are three values coming back from this API. If the value
coming back within the pointer to the arg is 1, the dataset is available; otherwise
0 (zero). Using one simple call, this API lets you know which data updates have
been downloaded.

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 33

Table 1 below lists valid dataset IDs.

Table 1.
Dataset Arg Type Value coming back from API call
dataSet_1 Int* 1 = dataset one is available; 0 = otherwise

dataSet_2 Int* 1 = dataset two is available; 0 = otherwise

dataSet_3 Int* 1 = dataset three is available; 0 = otherwise

Table 2 below lists return values.

Table 2.
Return Value Description
0 Success

-1 Failure

4.13 Error Handling

NOTE: For brief descriptions of error codes and messages you may encounter in
PC*MILER|Rail-Connect, see Appendix D.

PC*MILER|Rail-Connect contains a number of error handling functions which
can be used to diagnose the operation of the DLL as well as to troubleshoot a trip.
These functions facilitate the identification of runtime problems while using your
application’s interface to PCRSRV32.

All PC*MILER|Rail-Connect functions return a negative number on error, with
the value being the error code. The function PCRSGetErrorString() will
return a text description of the error code passed to it in the given character
buffer.

HRESULT PCRSGetError(int *errno);

HRESULT PCRSGetErrorString(int errorCode, char *buffer,
int bufSize, int *chars);

HRESULT PCRSSetDebug(int level, int *oldLevel);
(Deprecated in Version 22)

HRESULT PCRSGetDebug(int *debugLev); (Deprecated in Version 22)

PCRSSetDebug() allows you to increase the debugging level to help diagnose
runtime problems initializing the DLL. PCRSSetDebug() returns the previous
debugging level in the pointer argument ‘oldLevel’. (Deprecated in Version 22)

 PC*MILER|Rail-Connect User’s Guide 34

PCRSGetDebug()returns the current debugging level in the pointer argument
‘debugLev’. (Deprecated in Version 22)

PCRSGetError() returns the number of the last error the server encountered in
the argument ‘errno’. There are constants defined for each of the possible errors
in the header pcrsdefs.h.

PCRSGetErrorString() will get the associated error text from the DLL's
resources. It returns the number of characters copied into the buffer in the
argument ‘chars’.

See the code sample for opening the server connection for an example of error
handling (or refer to the demo code shipped with the server).

4.14 AutoRouting Functions

PC*MILER|Rail-Connect supports both Interactive routing and AutoRouting,
similar to the PC*MILER|Rail. The previous sections have discussed various
standard routing features and techniques. This section will describe the analagous
functions available for AutoRouting.

AutoRouting allows the user to specify an origin, destination, and optional ‘via’
point, and finds all routes between those points. These routes will be determined
from all rail carriers serving those points, unless the user chooses to specify a
particular carrier at any point (orig, dest, or via). Users can then get a summary
of all routes as well as (Key Station, Detailed Route, and Detailed Geocode)
reports on any specific route.

The following is a list of the DLL API functions for AutoRouting, along with a
brief description.

HRESULT PCRSClearAutoRouter (Trip trip);

HRESULT PCRSAddAutoRouteOrig (Trip trip, char *geoName,
char *geoChar, char *rrIn);

HRESULT PCRSAddAutoRouteDest (Trip trip, char *geoName,
char *geoChar, char *rrIn);

HRESULT PCRSAddAutoRouteVia (Trip trip, char *geoName,
char *geoChar);

HRESULT PCRSCalcAutoRoutes (Trip trip, int
*numAutoRoutes);

HRESULT PCRSGetNumAutoRoutes (Trip trip, int
*numAutoRoutes);

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 35

HRESULT PCRSGetAutoRouteLine (Trip trip, char *buffer,
int bufSize, int which, int *pNumJcts);

HRESULT PCRSGetAutoRouteMiles (Trip trip, int which,
long *pMiles);

PCRSClearAutoRouter() simply clears any stops or trips previously stored
in the AutoRouter.

PCRSAddAutoRouteOrig() adds the origin point to the AutoRouter. This
requires the user to specify the placeCode and type (station, SPLC, etc.).
Railroad (rrIn) is an optional field: if specified, the AutoRouter will only use that
railroad at that point, otherwise all railroads serving the specified location will be
considered.

PCRSAddAutoRouteDest() same as above but for destination stop.

PCRSAddAutoRouteVia() similar to the orig and dest versions above,
however this is simply a ‘waypoint’ and does not allow specification of a railroad.

PCRSCalcAutoRoutes() finds all routes between the points previously set
using the above functions. The number of routes found is returned in the pointer
argument ‘numAutoRoutes’.

PCRSGetNumAutoRoutes() returns the number of routes previously
calculated in in the pointer argument ‘numAutoRoutes’.

PCRSGetAutoRouteLine() returns a summary of the selected route (by
‘which’) that includes mileage, railroads, and junctions.

PCRSGetAutoRouteMiles() returns the mileage of the route selected by
‘which’.

A code sample of running an AutoRoute follows:

#define BUFLEN 128
char buffer[BUFLEN];
int numLines, i;
HRESULT srvRet;

/* Error handling code (of srvRet) will be omitted
for brevity */

srvRet = PCRSClearAutoRouter (myTrip);
srvRet = PCRSAddAutoRouteOrig (myTrip, "OAKLAND CA",

"C", NULL);
srvRet = PCRSAddAutoRouteDest (myTrip, "BALTIMORE MD",

"C",NULL);

 PC*MILER|Rail-Connect User’s Guide 36

srvRet = PCRSCalcAutoRoutes (myTrip, &numAutoRoutes);
for (i = 0; i < numAutoRoutes; i++)
{
 srvRet = PCRSGetAutoRouteMiles (myTrip, i,
 &miles_tenths);
 srvRet = PCRSGetAutoRouteLine (myTrip, buffer,
 BUFLEN, i, &numJcts);
 miles = (float) miles_tenths / 10;
 printf ("Route #%d/%d, Miles: %3.1f, NumJcts:%d,
 Desc:%s", i, numAutoRoutes, miles,
 numJcts, buffer);
}

Users can also generate the standard reports for any AutoRoute calculated by the
above functions. These AutoRoute reporting functions are similar to the
previously discussed report functions, and are as follows:

HRESULT PCRSGetARRpt (Trip trip, int which, char
*rptType, char *buffer, int bufSize, int
*pBuflen);

HRESULT PCRSGetARRptLine (Trip trip, int which, char
*rptType, int rowNum, char *buffer, int bufSize,
int *pBuflen);

HRESULT PCRSARGetRptLength (Trip trip, int which, char
*rptType, long *rptLen);

HRESULT PCRSGetARNumRptLines(Trip trip, int which, char
*rptType, int *numLines);

PCRSGetARRpt() will place the entire report body in the given buffer (up to
bufSize-1 bytes) while the remaining functions retrieve the report from the server
one line at a time. A code example for line by line retrieval of a specific
AutoRoute follows:

int routeNum;

/* Get Detailed Route report for 2nd route: */
routeNum = 2;
srvRet = PCRSGetARNumRptLines(myTrip, routeNum, "D",
 &numLines);
for (i = 0; i < numLines; i++)
{
 srvRet = PCRSGetARRptLine(myTrip, routeNum, "D", i,
 buffer, BUFLEN, NULL);
 printf ("%s", buffer);
}

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 37

4.15 Setting Up IIS

You can set up permissions to use PC*MILER|Rail-Connect by .NET
applications that run under IIS and ASP.

In order to monitor configuration file changes, ASP.NET requires read, execute,
and list access for the ASPNET account for the web site root (i.e.
c:\inetpub\wwwroot, or any alternative site directory you may have configured in
IIS), the content directory and the application root directory. The application root
corresponds to the folder path associated with the application virtual directory in
the IIS Administration tool (inetmgr).

As an example, let’s use the default PC*MILER|Rail application hierarchy:

C:\ALK Technologies\PCRWIN22

The ASPNET account needs read permissions for this product folder. To add
permissions to the directory, perform the following steps:

1. Using the Windows Explorer, navigate to C:\ALK Technologies\PCRWIN22

2. Right click on the directory folder and choose "Properties"

3. Navigate to the "Security" tab on the property dialog

 PC*MILER|Rail-Connect User’s Guide 38

4. Click the "Add" button and enter the machine name followed by the ASPNET
account name. For example, on a machine named "webdev", you would enter
webdev\ASPNET and hit "OK".

5. Ensure that the ASPNET account has the "Read & Execute", "List Folder
Contents", and "Read" checkboxes checked.

6. Hit OK to close the dialog and save the changes.

4.16 Calling PC*MILER|Rail APIs from a Web Service

If you are planning to call PC*MILER|Rail from a web service, here is some
sample code along with the imports for PC*MILER|Rail Connect APIs. The
example code demonstrates how to open and close the server and has a call to
look up mileage. This will allow you to create a sample .NET client with
PC*MILER|Rail Connect APIs for .NET use. Please follow the DllImport
convention below for defining any other functions from PC*MILER|Rail API set.

For the data type mapping, the rules are:

• Use int or integer for longs and shorts.
NOTE: The TRIPID should be declared as Int or Integer.

• Use StringBuilder for returned strings.

• Use ref or ByRef for long/int/short pointers to returned pointers.

NOTE: The following PC*MILER|Rail functions declared below were tested
with PC*MILER|Rail Version 18. There is a potential for a declaration error in
the future due to differences in Win 32 declarations of "C" functions in our
unmanaged DLLs. Therefore, the dllimports may need to be changed with future
versions of PC*MILER|Rail.

using System;
using System.Text;
using System.Runtime.InteropServices;

namespace RailServer
{

public abstract class DemoServer
 {
 [DllImport("C:\\Windows\\pcrsrv32.dll", EntryPoint
= "PCRSInitSrv")]
 public static extern Int32 InitSrv(String
callerName, String iniFile);

 [DllImport("C:\\Windows\\pcrsrv32.dll", EntryPoint
= "PCRSCleanupSrv")]

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 39

 public static extern Int32 CleanupSrv();

 [DllImport("C:\\Windows\\pcrsrv32.dll", EntryPoint
= "PCRSNewTrip")]
 public static extern Int32 PCRSNewTrip(ref Int32
tripId);

 [DllImport("C:\\Windows\\pcrsrv32.dll", EntryPoint
= "PCRSDeleteTrip")]
 public static extern Int32 PCRSDeleteTrip(Int32
tripId);

 [DllImport("C:\\Windows\\pcrsrv32.dll", EntryPoint
= "PCRSSetRouteFormula")]
 public static extern Int32
PCRSSetRouteFormula(Int32 tripId, String newParam);

 [DllImport("C:\\Windows\\pcrsrv32.dll", EntryPoint
= "PCRSSetRouteMethod")]
 public static extern Int32
PCRSSetRouteMethod(Int32 tripId, String newParam);

 [DllImport("C:\\Windows\\pcrsrv32.dll", EntryPoint
= "PCRSSetRouteType")]
 public static extern Int32 PCRSSetRouteType(Int32
tripId, String newParam);

 DllImport("C:\\Windows\\pcrsrv32.dll", EntryPoint
= "PCRSCalcTrip")]
 public static extern Int32 PCRSCalcTrip(Int32
tripId, String orig, String origRR, String origGeo,
 String dest, String destRR, String destGeo,
ref Int32 miles);
 }

class Program

{
 static void HandleError(Int32 errCode)

 Console.WriteLine("error code: " + errCode +
"\n\nPress any key to finish...");
 Console.ReadLine();
 Environment.Exit(errCode);
 }

 static void Main(string[] args)
 {
 Int32 srvRet = -1;
 Int32 myTrip = 0;

 PC*MILER|Rail-Connect User’s Guide 40

STEP 1: Initialize the Server

 if (0 != (srvRet = DemoServer.InitSrv("Rail
Server Test", "C:\\WINDOWS\\pcrsrv.ini")))
 {
 Console.WriteLine("Server failed to start...");
 HandleError(srvRet);
 }
 else
 Console.WriteLine("Server started...\n");

STEP 2: Request a new trip handle from the Server

 if (0 != (srvRet = DemoServer.PCRSNewTrip(ref
myTrip)))
 Environment.Exit(srvRet);

STEP 3: Set the routing options (NOTE: The following options are

the defaults.)

 srvRet = DemoServer.PCRSSetRouteFormula (myTrip,
"P"); /* Practical */
 srvRet = DemoServer.PCRSSetRouteMethod (myTrip,
"F"); /* Familized */
 srvRet = DemoServer.PCRSSetRouteType (myTrip,
"I"); /* Interactive */

STEP 4: Compute Denver to Oakland route on UP (single carrier)

 Int32 miles_tenths = 0;
 Single miles;
 if (0 != (srvRet = DemoServer.PCRSCalcTrip(myTrip,
"DENVER CO", "UP", "C",
 "OAKLAND CA", "UP", "C", ref miles_tenths)))
 {
 Console.WriteLine("PCRSCalcTrip() error...");
 HandleError(srvRet);
 }
 else
 {
 miles = (Single) miles_tenths / 10;
 Console.WriteLine ("Denver CO (on UP) to
Oakland CA (on UP) is " + miles + " miles.\n");
 }

 Chapter 4: Using PC*MILER|Rail-Connect From ‘C’ 41

STEP 5: Trip Cleanup - release mem for trip

 if (0 != (srvRet = DemoServer.PCRSDeleteTrip
(myTrip)))
 {
 Console.WriteLine("PCRSDeleteTrip() error...");
 HandleError(srvRet);
 }

STEP 6: Clean up server

 if (0 != (srvRet = DemoServer.CleanupSrv()))
 {
 Console.WriteLine("Server failed to stop...");
 HandleError(srvRet);
 }
 else
 Console.WriteLine("Server stopped...\n");

 Console.WriteLine("Press any key to finish... ");
 Console.ReadLine();
 }
 }
}

 PC*MILER|Rail-Connect User’s Guide 42

Using PC*MILER|Rail-Connect
from EXCEL

PC*MILER|Rail-Connect functionality can be easily integrated with popular
software products such as Microsoft Excel and Lotus 1-2-3 using the
PC*MILER|Rail-Spreadsheets and PC*MILER|Rail-Mapping Excel Add-Ins.
These Add-Ins are included with your Connect installation.

PC*MILER|Rail-Spreadsheets allows spreadsheet users and software developers
to easily access mileage information from within their spreadsheet programs, and
PC*MILER|Rail-Mapping can be used to plot routes on a map.

The following files are installed in the Excel folder in your PC*MILER|Rail
installation folder (usually C:\ALK Technologies\PCRWIN22\Connect\Excel):

pcrstest.xls An Excel spreadsheet containing illustrative examples

of PCRSRV32.DLL calls (for mileaging).

pcrss32.xla The PC*MILER|Rail-Spreadsheets Excel Add-In for
mileaging / routing.

pcrmtest.xls An Excel spreadsheet containing illustrative examples
of PCRMMP32.DLL calls (for mapping calls).

pcrmmp32.xla The PC*MILER|Rail-Mapping Excel Add-In for
mapping.

5.1 Enabling the Excel Add-Ins

The PC*MILER|Rail installation normally copies the .xla files listed above into
the XLSTART folder of your Microsoft Office installation to enable autoloading
in Excel. This means that the Connect Excel functions should be available
automatically when you open Excel.

To check this, open Excel and select File menu > Options > Add-Ins and make
sure that “PC*MILER|Rail-Spreadsheets” and “PC*MILER|Rail-Mapping” are
listed as add-ins.

The steps below only need to be used in case of a malfunction or with older
versions of Microsoft Office. They describe how to manually install/uninstall the
pcrss32.xla file and enable autoloading of the Connect Excel functions. The
same steps can be used for the pcrmmp32.xla Mapping functions.

5 C
ha

pt
er

 PC*MILER|Rail-Connect User’s Guide 43

Enabling the Add-In Manually

If you are running Microsoft Office 2003 (or older):

1. Start Excel.

2. In the Tools menu, select Add-Ins… > Browse.

3. Navigate to the folder where PC*MILER|Rail is installed and open the Excel
folder. The default location of the Excel folder is …\ALK
Technologies\PCRWINXX\Connect\Excel. (“XX” refers to the
PC*MILER|Rail version number, for example PCRWIN22).

4. In the …\Excel folder, click on the PCRSS32.XLA file, then click OK.

5. If you're installing from the network, a dialog box will appear that says "Copy
'PCRSS32.XLA' to Microsoft Excel Add-In Library?" You can choose Yes
to make a local copy or No if you don't wish to. In either case
PC*MILER|Rail-Spreadsheets will install properly.

6. In the Add-Ins dialog box, “PC*MILER|Rail-Spreadsheets” will appear in the
list of products with a check next to it. Click OK to continue. The
PC*MILER|Rail-Connect Excel functions are now ready to be used and will
be available every time you start Excel.

If you are running Microsoft Office 2007 (or newer):

1. Click on the Microsoft symbol in the upper left hand corner of the Excel

window.

2. In the list that opens, at the bottom click on the Excel Options button.

3. In the dialog box that opens, in the left hand column menu click on Add-Ins.

4. In the right hand side of the dialog box, there's a drop down menu next to
“Manage”. Scroll that drop down menu and choose Excel Add-Ins. Click the
Go button to continue.

5. In the Add-Ins dialog box that opens, click Browse and navigate to the folder
where PC*MILER|Rail is installed and go to the Excel folder. The default
location of the Excel folder is …\ALKTechnologies\PCRWINXX\Excel. (“XX”
refers to the PC*MILER|Rail version number, for example PCRWIN22.)

6. In the …\Excel folder, click on the PCRSS32.XLA file, then click OK.

7. In the Add-Ins dialog box, “PC*MILER|Rail-Spreadsheets” will appear in the
list of products with a check next to it.

8. Click OK to continue.

9. Next, you must enable Macros in Office 2007. To do so, click on the
Microsoft symbol in the upper left hand corner of the screen.

 PC*MILER|Rail-Connect User’s Guide 44

10. In the list that opens, at the bottom click on the Excel Options button.

11. In the dialog box that opens, in the left hand column menu listing click on
Trust Center.

12. In the left hand column, click on Add-Ins and uncheck each box on the right
side of the window.

13. In the left hand column, click on Macro Settings. In the right hand side of the
window, under the question "For macros in documents not in a trusted
location", click the radio button next to the last option (Enable all macros).
At the bottom, leave the box checked next to "Trust access to the VBA project
object model."

14. Click OK at the bottom of the dialog box to exit. The PC*MILER|Rail-
Connect Excel functions are now ready to be used and will be available every
time you start Excel.

Enabling Autoloading of PC*MILER|Rail-Connect in Excel

To enable autoloading of the Add-In when Excel is opened, copy the file
pcrss32.xla to the XLSTART folder within the Microsoft Office installation
folder on your computer (usually C:\Program Files > Microsoft Office > Office >
XLSTART).

Disabling the Add-In Manually

1. Start Excel.

2. Under the Tools menu, choose Add-Ins.

3. Locate “PC*MILER|Rail-Spreadsheets” in the list of Add-Ins and click to
remove the checkmark.

4. Click OK.

The PC*MILER|Rail functions are now removed. They won’t be available the
next time you start Excel.

Disabling Autoloading of PC*MILER|Rail-Connect in Excel

Remove the file pcrss32.xla from the XLSTART folder within the Microsoft
Office installation folder on your computer (usually C:\Program Files > Microsoft
Office > Office > XLSTART).

 Chapter 5: Using PC*MILER|Rail-Connect From Excel 45

5.2 Using the PC*MILER|Rail-Spreadsheets Mileage Function

All the functions available through the Spreadsheets and /or Mapping Add-Ins
(pcrss32.xla and pcrmmp32.xla) are listed in the User Defined function category
when you select the Insert > Function menu option.

There are two ways to use PC*MILER|Rail-Spreadsheets formulas: either type
them directly into a cell or use the Formula Wizard (see the Excel on-line Help
search topic “Formulas, Entering”). All PC*MILER|Rail-Spreadsheets formulas
will accept strings for station names, integers for SPLC codes, etc. For example,
380000 is a valid SPLC, as is “380000”.

NOTE: A sample file for Spreadsheet functions – PCRSTEST.XLS – is in the
…\Connect\Excel folder of the PC*MILER|Rail installation folder.

5.2.1 Getting the Miles Between Two Points

Currently, the only Excel interface function for PC*MILER|Rail-Connect is the
function Rmiles, which covers all necessary DLL API functions in order to allow
users to calculate mileage between any two points in the PC*MILER|Rail rail
network database.

The prototype for this function is:

Rmiles (orig, origRR, origGeo, dest, destRR, destGeo
[, RouteHow, RouteFam, RouteType, IncEx])

Rmiles returns the distance (in tenths of miles) from the origin to the destination
calculated using the PC*MILER|Rail database. The origin and destination may be
designated using any of the available geocode types in PC*MILER|Rail (i.e.
station/state, SPLC, ERPC, FSAC, and Rule260). The orig/destGeo arguments
denote which type of place identifier is being given, while the railroad fields
expect (up to) 4-character railroad SCACs (‘CSXT’, ‘NS’, etc.).

The optional arguments denote the routing options for that particular calculation.
Omitting them will cause Rmiles to use defaults. The valid values for the
parameters to Rmiles are as follows (bolded, underlined characters indicate the
single letter is the parameter):

Orig Any PC*MILER|Rail place name (do not include

comma) or geocode

OrigRR Any valid railroad abbreviation (SCAC)

OrigGeo City/state, SPLC, ERPC, FSAC, or Rule260

 PC*MILER|Rail-Connect User’s Guide 46

Dest Any PC*MILER|Rail place name (do not include
comma) or geocode

DestRR Any valid railroad abbreviation (SCAC)

DestGeo City/state, SPLC, ERPC, FSAC, or Rule260

RouteHow Practical, Intermodal, Shortest, Coal/Bulk, Auto Racks,
Fuel Surcharge (Default = P)

RouteFam Familized, Non-familized
(Default = F for AutoRoute, N for Standard)

RouteType Interactive*, AutoRouting
(Default = I)
NOTE: If RouteType is I, the IncEx field should be left
blank.
* i.e. “Standard” routing

IncEx Include, Exclude – to be valid, double quotes must be
included, e.g. type “I”.
NOTE: If RouteType is I, the IncEx field should be left
blank.

CAUTION: The PC*MILER|Rail database contains several cities and towns that
share the same name. For instance, in New Jersey there are three locations called
“Port Elizabeth”. If there are multiple instances of the station name you enter, the
Rmiles function will match to the first instance of the station name it finds as it
searches the database. For this reason, you may want to enter an alternate geocode
type for the origin and destination rather than station names.

Rmiles returns -1 if the origin, destination, or a routing option is not valid.
Default route options are for Practical (RouteFormula), Familized (RouteFam) ,
and Interactive (RouteType) routing.

Example of Rmiles in Excel

 Chapter 5: Using PC*MILER|Rail-Connect From Excel 47

5.2.2 Using Overrides

Overrides are automatically detected and used based on their existence in the
PC*MILER|Rail override file(s). Refer to the description of override usage in
section 4.10, Managing Overrides.

 PC*MILER|Rail-Connect User’s Guide 48

PC*MILER|Rail-Connect Mapping

PC*MILER|Rail’s map window can be used in two ways: 1) by linking an
application directly with the server DLL (PCRSRV32.DLL) and creating a map
window, or 2) by using the supplied program PCRExcelMapWindow.exe to start
the map window, and subsequently sending it windows messages to draw routes,
lines, and pins. This second method is commonly used in environments where
initiating and managing a window may not be feasible or convenient. The first
method is recommended for most development environments (e.g. C++,
VisualBasic, Delphi, etc.) since it affords greater control of the map window as
well as complete access to the map window API.

The PCRExcelMapWindow.exe will be installed in the Connect folder of your
PC*MILER|Rail installation (usually C:\ALK Technologies\PCRWIN22).

Refer to the end of Appendix A for a list of Mapping API functions. Sample
(C++) application code has been included that shows how to start the server,
create a map window, and perform various mapping functions. Refer to the
source file MAPTEST.CPP in the PCRWIN22\Connect\Mapping_Test_Sample
folder (the PCRWIN22 installation folder is installed by default in C:\ALK
Technologies, unless the installation location was customized).

NOTE: A sample file for Excel Mapping functions – PCRMTEST.XLS – is in
the …\Connect\Excel folder of the PC*MILER|Rail installation folder.

DEPRECATED FUNCTIONS: The Mapping functions below have been
deprecated in Version 22. They will return a fixed default value and generate a
log message stating that they are non-functional.

PCRMSetDebug PCRSSetCompoundPinIcon
PCRMGetDebug PCRSTogglePickTrains
PCRMSetDisplayModule PCRSToggleLegendScaleOfMiles
PCRMGetDisplayModule PCRSSetPinPicking
PCRMSetDisplayWindow PCRSGetPinPicking
PCRMGetDisplayWindow PCRSMoreDetail
PCRMSetRedraw PCRSLessDetail

6 C
ha

pt
er

 PC*MILER|Rail-Connect User’s Guide 49

Mapping Functions In Excel

The set of functions described in this chapter is available only through the
PC*MILER|Rail-Connect DLL Excel interface. There are two ways to use
PC*MILER|Rail-Connect DLL formulas: either type them directly into a cell or
use the Formula Wizard (see the Excel on-line Help for more information about
entering formulas).

For mapping through Excel, the Add-In PCRMMP32.XLA must have first been
installed and enabled (this normally occurs automatically when PC*MILER|Rail-
Connect is installed – refer to section 5.1) and the map window must be started
via the PCRExcelMapWindow.exe, in the PCRWIN22\Excel folder. A sample
file for Mapping functions in Excel is in the same location – open the file
PCRMTEST.XLS.

Mapping functions in Excel return 0 on success, -1 on failure.

7.1 Plotting an Icon

You can either plot a set of pins without naming each one, using PlotPin(), or you
can give each one an identifier which will allow you to modify its settings using
PlotPinID().

The prototype of the function PlotPin() is:

RPlotPin (symbol, location [, label])

PlotPin draws an icon on the map at the point specified by location. Symbol may
be one of the icons provided with PC*MILER|Rail-Connect (see section 7.2), or
the path and filename of a .BMP or .PNG. Location is any of the available
geocode types in PC*MILER|Rail: Station/State (e.g. Houston TX), SPLC,
ERPC, FSAC, or Rule260. Label is an optional string appearing under the icon.

Icons plotted with PlotPin are deleted using the function DeletePins.

The prototype of the function PlotPinID() is:

RPlotPinID (pinID, symbol, location [, label])

PlotPinID draws an icon, identified by pinID, on the map at the point specified by
location. PinID can be any string or other unique identifier. Symbol may be one of
the icons provided with PC*MILER|Rail-Connect (see section 7.2), or the path
and filename of a .BMP or .PNG. Location is any of the available geocode types

7 C
ha

pt
er

 PC*MILER|Rail-Connect User’s Guide 50

in PC*MILER|Rail: Station/State (e.g. Houston TX), SPLC, ERPC, FSAC, or
Rule260. Label is a string which appears under the icon and is optional.

Icons plotted with PlotPinID are NOT deleted using the function DeletePins. You
must delete them individually using DeletePinID.

7.2 PC*MILER|Rail-Connect Icons

HINT: Size the canvas before beginning to draw.

A PC*MILER|Rail-Connect icon is a text string composed of two parts: type and
color. Available icons are listed in the map_opts.ini file (shown below) found in
the App folder of your PC*MILER|Rail installation.

Map_opts.ini File (PCRWIN22\App Folder)

In addition to the icons, a Box or Circle can be plotted with a size argument (e.g.
‘Red Box 10’) which sets the box’s size in pixels.

You can also plot icons of your own design. To do so, pass the complete path to a
.BMP or .PNG file to the PlotPin or PlotPinID functions. For example, if you
pass the path ‘C:\ALK Technologies\PCRWIN22\pins\icon.bmp’ to either
function, you’ll see a new bitmap with the word ‘ICON’ on it displayed on your
map. Pins must be in .BMP or .PNG format.

 Chapter 7: Mapping Functions in Excel 51

7.3 Plotting Lines and Trips

Plotting lines and routes (trips) on the map are essentially similar. Plotting
functions use a single location field containing both start and end city/state
(station name) separated by a vertical bar (e.g. “Atlanta GA|Houston TX”), while
the PlotTrip function uses separate arguments for trip origin and destination.
Refer to the Function Wizard for a list of arguments (these are similar to the
PCRSRV32.DLL API functions described in Appendix A).

7.4 Plotting a Trip Between Two Points

The prototype for the function RPlotTrip is:

RPlotTrip (routeName, orig, origRR, origGeo, dest,
destRR, destGeo, rteType, rteFam)

The routeName argument is the feature layer to add the new trip to, and will be
displayed in the map window.

orig: string containing origin place code
origRR: origin railroad SCAC code (4-char abbrev.)
origGeo: City, SPLC, FSAC, ERPC, or Rule260
rteType: one of the PC*MILER|Rail route formulas, e.g. Practical or Shortest
rteFam: Familized or Not Familized (Standard routes are not familized, and

AutoRoutes are familized)

7.5 Plotting a Line Between Two Points

You can either plot a set of lines between two points, without naming each one,
using RPlotLine(), or you can give each one an identifier which will allow you to
modify its settings using RPlotLineID().

The prototype for the function RPlotLine is:

RPlotLine (Origin, Destination [, style])

RPlotLine draws a line between origin and destination on the map. Origin and
destination may be designated as any of the available geocode types in
PC*MILER|Rail (i.e. station/state, SPLC, ERPC, FSAC, and Rule260).

Style is a text string and is composed of two parts: color and width (in pixels)
separated by a space. It is optional. The colors available are the same as the ones
listed for Box and Circle pins above. The default color is Blue and the default
width is 4.

Lines plotted with RPlotLine are deleted using the function RDeleteLines.

 PC*MILER|Rail-Connect User’s Guide 52

The prototype for the function RPlotLineID is:

RPlotLineID (lineID, Origin, Destination [, style])

RPlotLineID draws a line, identified by lineID, between origin and destination on
the map. ID can be any string or other unique identifier. Origin and destination
may be designated as any of the available geocode types in PC*MILER|Rail (i.e.
station/state, SPLC, ERPC, FSAC, and Rule260).

Style is a text string and is composed of two parts: color and width (in pixels)
separated by a space. It is optional. The colors available are the same as the ones
listed for Box and Circle pins above. The default color is Blue and the default
width is 4.

Lines plotted with RPlotLineID are NOT deleted using the function
RDeleteLines. You must delete them individually using RDeleteLineID.

7.6 Deleting Icons

The prototype for the function RDeletePins is:

RDeletePins ()

The prototype for the function RDeletePinID is:

RDeletePinID (PinID)

7.7 Deleting Lines

The prototype for the function RDeleteLines is:

RDeleteLines ()

The prototype for the function RDeleteLineID is:

RDeleteLineID (LineID)

7.8 Deleting Trips

The prototype for the function RDeleteTrip is:

RDeleteTrip (routeName)

 Chapter 7: Mapping Functions in Excel 53

Advanced Mapping Functions

The advanced interface to the PC*MILER|Rail-Connect mapping functions gives
greater control over when and how pins, routes and lines are drawn, and allows
data about a pin to be displayed in a dialog box when the pin is chosen.

All arguments are strings, and the separator between elements in stops, styles,
options and labels is a vertical bar ('|'). For example, 'Newark NJ|Chicago
IL|191600' is a valid series of stops, and 'Red|5' is a valid style. The separator for
an importance range is two periods (".."). For example, '1..4' is a valid importance
range, as is simply '4' (the trip appears at levels 4 and higher).

NOTE: Additional functions are listed in Appendix A.

See section 3.4, Trip Options, for valid routing options.

8.1 Functions for Creating a Map Window

long PCRSCreateMapWin(HWND parentHWnd, const char*
title, int width, int height, HWND* newWin);

This function creates a new map window. The first argument is the handle to the
parent window. If the first argument is NULL, the new window will be created as
a child of the desktop window. A standalone overlapped map window will be
created as a child to this parent window and the title, width and the height for the
map window will be set. This map window always stays on top of the parent
window and it has a title and border.

This function returns the valid handle to the map window if it creates the map
window successfully. It returns NULL on error.

long PCRSCreateMapChild(HWND parentHWnd, HWND* newWin);

This function creates a new map window as a child of the parent window. In this
case, the map window is not a standalone window. Instead it gets created in the
client rectangle of the parent window. The new map window does not have a title
or border.

The first argument, which is the handle to the parent window, must not be NULL.

This function returns the valid handle to the map window, if it creates the map
window successfully. It returns NULL in case of error or if the parent window
handle is NULL.

8 C
ha

pt
er

 PC*MILER|Rail-Connect User’s Guide 54

A Delphi canvas, Visual Basic Form or a Borland OWL TFrameWindow could
all be parent windows.

In order to resize the map canvas, you should forward resize messages from the
parent to the map window child using PCRSResizeMapChild.

long PCRSResizeMapChild(short redraw);

This function returns FALSE if the parent window does not exist. Otherwise, it
resizes a map canvas to the size of the parent window created using
PCRSCreateMapWin. Calling this function will make the map child resize
itself to fit exactly inside the parent window.

long PCRSIsMapWinValid();

Returns FALSE if the map window was not created successfully or TRUE if it
was created successfully and is ready for further use. It is a quick programmatic
way to check if the map window is ready for use.

8.1 Pin Functions

long PCRSPlotPin(const char* layerID, const char* ID,
const char* importance, const char* symbol, const char*
location, const char* data);

Create or update a pin. The pin is uniquely identified by layerID and ID. If the
given pin does not exist, it is created. If it does exist, all data for the pin is
updated. The return code is negative if there is an error. If the layer identified by
layerID does not exist, then a layer is created.

The field ID can be any text string.

The field importance determines a level of importance for the given pin. The
importance of a pin determines at what level of detail the pin is drawn. Level of
detail works as follows: as the user zooms in to tighter areas on the map, the level
of detail increases. This means that less significant roads, places, and pins come
into view as the user zooms in. There are six levels of detail.

For pins, importance can be a number between 1 and 8. Importance level 1 is the
most important; pins with importance level 1 are always shown. Pins with
importance level 8 are only shown when the user is zoomed in very tight.

If you do not care about importance, specify "1" for the importance argument.
Pins with importance level 1 will always be shown.

 Chapter 8: Advanced Mapping Functions 55

Importance can be specified as a range, such as "1..3". If a pin's importance is
specified as a range, then it will only be shown when the map's level of detail falls
into that range. For example, suppose a pin is assigned the importance range
"1..5". The pin will show up when the map's level of detail is between 1 and 5.
Detail level 5 roughly corresponds to a zoom level of a single state. Therefore,
the pin will not show up when the map is zoomed in tighter than a single state.

Ranges can be useful when trying to reduce clutter on the map. Using importance
ranges, one could set-up different views of the same data, each with different
levels of detail. For example, suppose one is trying to plot 200 icons in two
neighboring states. When the map is zoomed to the entire United States, the 200
icons in those two states become very cluttered. To solve this problem, one could
create two pins--one for each state--that are displayed at importance levels "1..3".
Then, the 200 pins could be marked with importance levels "4..6". This has the
effect of showing two pins--one in each state--at the U.S. level. As the user
"zooms down" to the state level, the two aggregate pins will disappear, and the
200 pins will appear.

The field symbol must specify a valid symbol. Can be internal DLL type (such as
‘Green Box 5’, ‘Red Box 15’ – indicates size), or user supplied path to a .BMP or
.PNG file (‘c:\pins\myIcon.bmp’).

See section 7.2, PC*MILER|Rail-Connect Icons, for the icons provided with
PC*MILER|Rail-Connect.

The field location is a text string specifying a Station/State, i.e. a station name
followed by a two-character state abbreviation (example: Houston TX).

The field data is an optional list of up to 8 values for PC*MILER|Rail to store
and display in an information dialog when the pin is clicked on. The values in the
list are delimited by vertical bars.

long PCRSDeletePin(const char* layerID, const char* ID);

This function deletes the pin identified by ID in the layer layerID.

long PCRSDeletePinMap(const char* layerID);

This function removes the layer identified by layerID from the map. All pins in
the layer are deleted.

 PC*MILER|Rail-Connect User’s Guide 56

8.2 Trip and Line Functions

long PCRSPlotTrip(const char *orig, const char *origRR,
const char *origGeo, const char*dest, const
char*destRR, const char *destGeo, long*pMiles, const
char *routeName);

This function calculates and draws a trip on the map where routeName is the
feature layer to add the new trip to, this name will be displayed in the map
window. Use routeName to delete this trip, using PCRSDeleteTripByName.

orig and dest: string containing origin/destination place code
origRR and destRR: origin/destination railroad SCAC code (4-char abbrev.)
origGeo and destGeo: City, SPLC, FSAC, ERPC, or Rule260
pMiles: pointer into which calculated trip distance will be placed (in tenths of

miles/kms)

See section 3.4, Trip Options, for valid route options and section 4.3, Running
Simple Routes, for other arguments.

long PCRSPlotTrip2(const char *orig, const char
*origRR, const char *origGeo, const char*dest, const
char*destRR, const char *destGeo, long*pMiles, const
char *routeName, const char* routeType, const char*
routeMethod);

See PCRSPlotTrip above. Additional arguments:
routeType: I (interactive, i.e. standard) or A (autoroutes)
routeMethod: F (familized, for autoroutes) or N (not familized, for standard)

long PCRSPlotLine(const char* layerID, const char* ID,
const char* importance, const char* symbol, const char*
locations);

where layerID is the feature layer to add the new line to, ID is its unique
identifier, importance is a range of numbers denoting which levels of detail it will
appear at, symbol is what color and width to use, and locations is the list of points
(PC*MILER|Rail place names) that make up the line.

All arguments are strings, and the separator between elements in symbols and
locations is a vertical bar ('|'). For example, 'Houston TX|Chicago IL|191600' is a
valid series of points, and 'Red|5' is a valid symbol. The separator for an
importance range is two periods (".."). For example, '1..4' is a valid importance
range, as is simply '4' (the trip appears at levels 4 and higher). An importance
level of 1 is the highest, meaning the line will always appear.

 Chapter 8: Advanced Mapping Functions 57

long PCRSFrameLine(const char* layerID, const char*
ID);

This function frames the line created using PCRSPlotLine.

long PCRSAddRouteToMap(Trip trip);

This function can be used to add a pre-defined route (created with
PCRSNewTrip) to the map using its unique trip ID. This requires that the trip
ID be valid, that the trip is already properly populated, and has been successfully
run.

long PCRSDeleteRouteFromMap(Trip trip);

This function deletes the trip created using PCRSAddRouteToMap.

long PCRSDeleteTripByName(const char * routeName);

This function removes the trip identified by routeName.

long PCRSDeleteAllTrips();

This function deletes all trips created using PCRSPlotTrip or
PCRSPlotTrip2.

long PCRSDeleteLine(const char* layerID, const char*
ID);

This function removes the line identified by ID in the layer layerID.

8.3 Layer Management Functions

The user can group pins, trips, and lines into "layers" or "pinmaps." These layers
can be modified by the user through DLL function calls.

long PCRSSetLayerVisibility(const char* layerID, BOOL
show);

This function changes the visibility of the layer specified by layerID. If the show
parameter is non-zero, the layer is visible. If the show parameter is zero, the layer
is hidden. It is NOT deleted. Layers can be shown or hidden as often as desired.

long PCRSFrameLayer(const char* layerID);

Zooms the map to include all the pins in the pinmap layer layerID.

 PC*MILER|Rail-Connect User’s Guide 58

long PCRSDeleteLayer(const char* layerID);

Deletes the layer specified by layerID.

long PCRSZoomIn();

Zooms the map in by one zoom level.

long PCRSZoomOut();

Zooms the map out by one zoom level.

 Chapter 8: Advanced Mapping Functions 59

Appendix A:
‘C’ Function Declarations

/***
* High level API functions to 'start' and 'stop' the Rail Server + get trips
***/
HRESULT _PCRSFN PCRSInitSrv(const char *name, const char *iniFile);
Argument Values:
name: arbitrary (usually calling application)
iniFile: path and name of PC*MILER|Rail INI file (e.g. c:\ALK
Technologies\pcrwin22\pcrsrv.ini)

HRESULT _PCRSFN PCRSCleanupSrv();

HRESULT _PCRSFN PCRSNewTrip (Trip *pTripID);
Argument Values:
pTripID: pointer to a 4 byte integer in which the new Trip handle will be placed

HRESULT _PCRSFN PCRSDeleteTrip(Trip trip);
Argument Values:
trip: a valid trip ID (obtained via PCRSNewTrip)

/***
* Utility and Error Handling Functions
***/
HRESULT _PCRSFN PCRSGetError(int *errno);
Argument Values:
errno: a pointer to an integer into which the current error # will be placed

HRESULT _PCRSFN PCRSGetErrorString(int errorCode, char *buffer,

int bufSize, int *numchars);
Argument Values:
errCode: an errorCode returned by an API function (or PCRSGetError)
buffer: character buffer into which message (error desc.) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
numchars: actual # of bytes copied to ‘buffer’

HRESULT _PCRSFN PCRSSetDebug(int level, int *oldLevel);
(Deprecated in Version 22)
Argument Values:
level: new debug level setting got DLL (0 - 19, 19 produces most debug messages)
oldLevel: pointer into which the previous debug level will be placed

A A
pp

en
di

x

 PC*MILER|Rail-Connect User’s Guide 60

HRESULT _PCRSFN PCRSGetDebug(int *debugLev); (Deprecated in Version 22)
Argument Values:
debugLev: pointer into which the current debug level will be placed

HRESULT _PCRSFN PCRSAbout (const char *which, char *buffer,

int bufSize, int *numchars);
Argument Values:
which: string identifying the product version/name information desired

(e.g. “ProductName”, “ProductVersion”)
 The product version is defined in the “PCRWIN22\user.cfg” file.

buffer: character buffer into which message (About info) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
numchars: actual # of bytes copied to ‘buffer’

HRESULT _PCRSFN PCRSSendAboutInfo (); (Deprecated in Version 22)

/***
* Routing / Mileage Functions (includes AutoRoute functions)
***/
HRESULT _PCRSFN PCRSCalcTrip(Trip trip, char *orig, char *origRR,
 char *origGeo, char *dest, char *destRR,

 char *destGeo, long *pMiles);
Argument Values:
trip: a valid trip ID (obtained via PCRSNewTrip)
orig: string containing origin place code
origRR: origin railroad SCAC code (4-char abbrev.)
origGeo: City, SPLC, FSAC, ERPC, or Rule260
<dest fields are similar to above>
pMiles: pointer into which calculated trip distance will be placed

(in tenths of miles/kms)

HRESULT _PCRSFN PCRSCalculate(Trip trip, long *pMiles);
Argument Values:
trip: a valid trip ID (obtained via PCRSNewTrip)
pMiles: pointer into which calculated trip distance will be placed

(in tenths of miles/kms)

HRESULT _PCRSFN PCRSSetRouteFormula (Trip trip, char *newParam);
Argument Values:
newParam: P, I, S, C, A, F (Practical, Intermodal, Shortest, Coal/Bulk, Auto Racks, or
Fuel Surcharge) – Default = P.

HRESULT _PCRSFN PCRSSetRouteMethod (Trip trip, char *newParam);
Argument Values:
newParam: F or N (Familized or Non-familized) – Default = F.

 Appendix A: ‘C’ Function Declarations 61

HRESULT _PCRSFN PCRSSetRouteType (Trip trip, char *newParam);
Argument Values:
newParam: I or A (Interactive or AutoRoute) – Default = I.

HRESULT _PCRSFN PCRSSetRouteIncEx (Trip trip, char *newParam);
Argument Values:
newParam: I or E (Include or Exclude junctions at origin or destination
for AutoRoutes) – Default = E.

HRESULT _PCRSFN PCRSSetUnitsMiles (Trip trip); Default = MILES.

HRESULT _PCRSFN PCRSSetUnitsKilometers (Trip trip); Default = MILES.

HRESULT PCRSSetIncNonStationRR (Trip tripID, char *newParam);
Argument Values:
newParam: I or E (Include or Exclude railroads for autoRoutes that do not have active
freight stations at location) – Default = I.

HRESULT PCRSSetIntermodalOnlyIncEx (Trip tripID, char *newParam);
Argument Values:
newParam: I or E (Include or Exclude intermodal-only stations on a Practical Route) –
Default = I.

HRESULT PCRSSetIncAMTK (Trip tripID, char *newParam);
Argument Values:
newParam: I or E (Include or Exclude Amtrak from generated autoRoutes) – Default = I.

HRESULT _PCRSFN PCRSGetRRs (Trip trip, short rrArray[], int rrArrayLen,
 int *numRRs);
Argument Values:
rrArray: array of railroads
rrArrayLen: size of array
numRRs: total # of RRs in the route

HRESULT _PCRSFN PCRSGetNumRouteLegs (Trip trip, int *numLegs);
Argument Values:
numLegs: number of carrier legs in the trip

HRESULT _PCRSFN PCRSGetNumRouteLinks (Trip trip, int *legNum);
Argument Values:
legNum: leg index #

HRESULT _PCRSFN PCRSGetRouteInfo(Trip trip, int legNum, LINKID

*pLinks);
Argument Values:
legNum: leg index #
pLinks: pointer to hold the links

 PC*MILER|Rail-Connect User’s Guide 62

HRESULT _PCRSFN PCRSGetRouteLegInfo (Trip trip, int which, short *rrNum,
long *miles, char *rule260);

Argument Values:
which: leg index #
rrNum: RR #
miles: leg miles in tenths
rule260: junction name

HRESULT _PCRSFN PCRSLatLongsEnRoute (Trip trip, double* latlong, long

numPairs);
Argument Values:
latlong: list of latlong pairs
numPairs: # latlong pairs returned in the list

/***
* AutoRouter functions:
***/
HRESULT _PCRSFN PCRSClearAutoRouter (Trip trip);

HRESULT _PCRSFN PCRSAddAutoRouteOrig (Trip trip, char *geoName,
 char *geoChar, char *rrIn);
Argument Values:
geoName: placeName or geocode
geoChar: City, SPLC, FSAC, ERPC, or Rule260
rrIn: railroad SCAC (e.g. ‘BNSF’, ‘UP’, etc)

HRESULT _PCRSFN PCRSAddAutoRouteDest (Trip trip, char *geoName,
 char *geoChar, char *rrIn);
Argument Values:
geoName: placeName or geocode
geoChar: City, SPLC, FSAC, ERPC, or Rule260
rrIn: railroad SCAC (e.g. ‘CSXT’, ‘NS’, etc)

HRESULT _PCRSFN PCRSAddAutoRouteVia (Trip trip, char *geoName,
 char *geoChar);
Argument Values:
geoName: placeName or geocode
geoChar: City, SPLC, FSAC, ERPC, or Rule260

HRESULT _PCRSFN PCRSCalcAutoRoutes (Trip trip, int
 *numAutoRoutes);
Argument Values:
numAutoRoutes: pointer argument into which total # of successfully
calculated routes will be placed

 Appendix A: ‘C’ Function Declarations 63

HRESULT _PCRSFN PCRSGetNumAutoRoutes (Trip trip, int
 *numAutoRoutes);
Argument Values:
numAutoRoutes: pointer argument into which total # of successfully
calculated routes will be placed

HRESULT _PCRSFN PCRSGetAutoRouteLine (Trip trip, char *buffer,
 int bufSize, int which, int *pNumJcts);
Argument Values:
buffer: character buffer into which message (route description) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
which: index # of desired route (Note: first route is value 0)
pNumJcts: # of railroad junctions in selected route

HRESULT _PCRSFN PCRSGetAutoRouteMiles (Trip trip, int which,
 long *pMiles);
Argument Values:
pMiles: pointer into which calculated trip distance will be placed

(in tenths of miles/kms)

HRESULT _PCRSFN PCRSGetNumARLegs (Trip trip, int arIndx, int *numLegs);
Argument Values:
arIndx: AutoRoute index #
numLegs: number of legs from a given auto-route

HRESULT _PCRSFN PCRSGetARLegInfo (Trip trip, int arIndx, int which,

short *rrNum, long *miles, char *rule260);
Argument Values:
arIndx: AutoRoute index #
which: leg index #
rrNum: RR #
miles: leg miles in tenths
rule260: junction name

/***
* State mileage functions
***/
HRESULT _PCRSFN PCRSGetAllStateRRMileage (Trip trip, MileageStruct*

combinationArray, long numCombinations);
Argument Values:
combinationArray: the output list containing MileageStruct structures representing

unique combinations of RR, state and miles for the given trip
numCombinations: the number of structures returned in the array

 PC*MILER|Rail-Connect User’s Guide 64

HRESULT _PCRSFN PCRSGetAllStateRRMileage1 (Trip trip, char
*mileageBuffer, long bufferSize);

Argument Values:
mileageBuffer: output list of unique combinations of RR, state and miles for the given

trip
bufferSize: the length of the mileageBuffer

HRESULT _PCRSFN PCRSGetStateMiles (Trip trip, int stIndx, long *pMiles,
 char *stAbbr);
Argument Values:
stIndx: state index #
pMiles: state miles
stAbbr: state abbreviation

HRESULT _PCRSFN PCRSGetStateRRMiles (Trip trip, int stIndx, short rrNum,
 long *pMiles);
Argument Values:
stIndx: state index # (see Appendix E for a list of state index numbers)
rrNum: RR number
pMiles: state miles

HRESULT _PCRSFN PCRSGetMaxStates (short *maxStates);
Argument Values:
maxStates: max # of states

HRESULT _PCRSFN PCRSGetMaxStateRRs (short *maxStateRRs);
Argument Values:
maxStateRRs: max # of RRs per state

/***
* Stop Management and Geocoding Functions
***/
HRESULT _PCRSFN PCRSAddStop(Trip trip, char *stopName,
 char *rrIn, char *geoChar);
Argument Values:
stopName: placeName or geocode
geoChar: City, SPLC, FSAC, ERPC, or Rule260
rrIn: railroad SCAC (e.g. ‘CN’, ‘CPRS’, etc)

HRESULT _PCRSFN PCRSDeleteStop(Trip trip, int which);
Argument Values:
which: stop # to delete (Note: first stop is index 0)

HRESULT _PCRSFN PCRSGetNumStops(Trip trip, int *pNumStops);
Argument Values:
pNumStops: # of stops in route

 Appendix A: ‘C’ Function Declarations 65

HRESULT _PCRSFN PCRSClearStops(Trip trip);

HRESULT _PCRSFN PCRSGetStop(Trip trip, int which, char *buffer,

int bufSize, int *numchars, char *rr);
Argument Values:
which: index # of desired stop (Note: first stop is index 0)
buffer: character buffer into which message (stop name) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
numchars: actual # of bytes copied to ‘buffer’
rr: railroad for given stop

HRESULT _PCRSFN PCRSRRLookup(Trip trip, char *geoName,
 char *geoChar, int *numMatches);
Argument Values:
geoName: placeName or geocode
geoChar: City, SPLC, FSAC, ERPC, or Rule260
numMatches: actual # railroads found

HRESULT _PCRSFN PCRSGetRRMatch(Trip trip, int which,
 char *buffer, int bufSize, int *numchars);
Argument Values:
which: index # of desired geocode result line (Note: first match is index 0)
buffer: character buffer into which message (geocode result) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
numchars: actual # of bytes copied to ‘buffer’

HRESULT PCRSJunctionLookup(Trip tripID, char *rrin, char *rrOut, int

*numMatches);
Argument Values:
rrIn, rrOut: railroad SCAC (e.g. “NS”, “UP”, etc.)
numMatches: number of junctions matched

HRESULT PCRSGetJunctionMatch(Trip tripID, int which, char *buffer, int

bufSize, int *pNumChars);
Argument Values:
which: index # of desired geocode result line (Note: first match is index 0)
buffer: character buffer into which output geocode will be placed
bufSize: maximum # of bytes that can be copied into 'buffer'
numchars: actual # of bytes copied to 'buffer'

HRESULT _PCRSFN PCRSGeoLookup(Trip trip, char *geoName,
 char *geoChar, char *rrIn, int *numMatches);
Argument Values:
geoName: placeName or geocode
geoChar: City, SPLC, FSAC, ERPC, or Rule260
rrIn: railroad SCAC (e.g. ‘KCS’, ‘CN’, etc)
numMatches: actual # places found

 PC*MILER|Rail-Connect User’s Guide 66

HRESULT _PCRSFN PCRSGetNumGeoMatches(Trip trip, int *numMatches);
Argument Values:
numMatches: actual # places found

HRESULT _PCRSFN PCRSGetGeoMatch(Trip trip, int which,
 char *buffer, int bufSize, int *numchars);
Argument Values:
which: index # of desired geocode result line (Note: first match is index 0)
buffer: character buffer into which message (geocode result) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
numchars: actual # of bytes copied to ‘buffer’

HRESULT _PCRSFN PCRSRRName2Num (char *rr, short *pRRNum);
Argument Values:
rr: railroad SCAC code (eg. ‘KCS’,’CN’ etc)
pRRNum: railroad AAR#

HRESULT _PCRSFN PCRSRRNum2Name (short rrNum, char *rrBuf);
Argument Values:
rrNum: railroad AAR#
rrBuf: railroad SCAC code (eg. ‘KCS’,’CN’ etc)

HRESULT _PCRSFN PCRSConvertGeoCode(char *geoName, char

*geoCharFrom, char *geoCharTo, char *rr, char *buffer, int
bufSize, int *numchars);

Argument Values:
geoName: placeName or geocode
geoCharFrom: City, SPLC, FSAC, ERPC, or Rule260
geoCharTo: City, SPLC, FSAC, ERPC, or Rule260
rr: railroad SCAC (e.g. ‘KCS’, ‘CN’, etc)
buffer: character buffer into which message (geocode result) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
numMatches: actual # of bytes copied to ‘buffer’

HRESULT _PCRSFN PCRSSwitchDataSet (int DataSetID);
Argument Values:
DataSetID: Base dataset or one of three quarterly updates, e.g. ’22.0_BASE’,

’22.1_UPDATE’, etc.

HRESULT _PCRSFN PCRSIsUpdateAvailable (int DataSetID);
Argument Values:
DataSetID: Base dataset or one of three quarterly updates, e.g. ’22.0_BASE’,

’22.1_UPDATE’, etc.

HRESULT _PCRSFN PCRSGetAvailableUpdates (int *dataSet_1, int *dataSet_2,
int *dataset_3);
(for each dataset, int* argument returns 1 if available, 0 if not)

 Appendix A: ‘C’ Function Declarations 67

/***
* Report Functions
***/
HRESULT _PCRSFN PCRSGetRpt (Trip trip, char *rptType,
 char *buffer, int bufSize, int *pBuflen);
Argument Values:
rptType: K, D, or G(Key Station, Detailed Route, or Detailed Geocode)
buffer: character buffer into which message (report body) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
pBufLen: actual # of bytes copied to ‘buffer’

HRESULT _PCRSFN PCRSGetRptLine (Trip trip, char *rptType,
 int rowNum, char *buffer, int bufSize, int *pBuflen);
Argument Values:
rptType: K, D or G (Key Station, Detailed Route, or Detailed Geocode)
rowNum: desired report line (row) number (indexed from 0)
buffer: character buffer into which message (report body) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
pBufLen: actual # of bytes copied to ‘buffer’

HRESULT _PCRSFN PCRSGetNumRptLines(Trip trip, char *rptType,
 int *numLines);
Argument Values:
rptType: K, D or G (Key Station, Detailed Route, or Detailed Geocode)
numLines: pointer into which total # of lines in report will be placed

HRESULT _PCRSFN PCRSGetRptLength (Trip trip, char *rptType,
 long *rptLen);
Argument Values:
rptType: K, D or G (Key Station, Detailed Route, or Detailed Geocode)
rptLen: pointer into which total # of bytes in report body will be placed

/***
* AutoRouter Functions
***/
HRESULT _PCRSFN PCRSGetARRpt (Trip trip, int which, char *rptType,
 char *buffer, int bufSize, int *pBuflen);
Argument Values:
which: index of desired AutoRouter route (indexed from 0)
rptType: K, D or G (Key Station, Detailed Route, or Detailed Geocode)
buffer: character buffer into which message (report body) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
pBufLen: actual # of bytes copied to ‘buffer’

 PC*MILER|Rail-Connect User’s Guide 68

HRESULT _PCRSFN PCRSGetARRptLine (Trip trip, int which, char
 *rptType, int rowNum, char *buffer, int bufSize,
 int *pBuflen);
Argument Values:
which: index of desired AutoRouter route (indexed from 0)
rptType: K, D or G (Key Station, Detailed Route, or Detailed Geocode)
rowNum: desired report line (row) number (indexed from 0)
buffer: character buffer into which message (report body) will be placed
bufSize: maximum # of bytes that can be copied into ‘buffer’
pBufLen: actual # of bytes copied to ‘buffer’

HRESULT _PCRSFN PCRSARGetRptLength (Trip trip, int which,
 char *rptType, long *rptLen);
Argument Values:
which: index of desired AutoRouter route (indexed from 0)
rptType: K, D or G (Key Station, Detailed Route, or Detailed Geocode)
rptLen: pointer into which total # of bytes in report body will be placed

HRESULT _PCRSFN PCRSGetARNumRptLines(Trip trip, int which,
 char *rptType, int *numLines);
Argument Values:
which: index of desired AutoRouter route (indexed from 0)
rptType: K, D or G (Key Station, Detailed Route, or Detailed Geocode)
numLines: pointer into which total # of lines in report will be placed

/***
* Mapping Functions
***/
// Create a map window
long PCRSCreateMapWin(HWND parentHWnd, const char* title, int width, int

height, HWND* newWin);
Argument Values:
parentHWnd: handle of window which is to be the map window’s parent
title: title of map window
width, height: …of map window (in pixels)
newWin: pointer to a window handle into which the handle of the newly created map

window will be placed

// Create a map window as a child window to be managed by a parent application
long PCRSCreateMapChild(HWND parentHWnd, HWND* newWin);
Argument Values:
<see above>

// Resize the map child to an exact fit inside the parent window
long PCRSResizeMapChild(short redraw);
Returns FALSE if parent window does not exist.

 Appendix A: ‘C’ Function Declarations 69

// Check if the map window is ready for use
long PCRSIsMapWinValid();
Returns FALSE if the map window was not created successfully, TRUE if it was created
successfully and is ready for further use.

// Draw/delete pins in the map window
long PCRSPlotPin(const char* layerID, const char* ID, const char* importance,

const char* symbol, const char* location, const char* data);
Argument Values:
layerID: this is the target map layer in which pin will be added / drawn
ID: this is the pin ID itself
importance: 1-8 governs the zoom level at which pin will be visible on map – see

introduction to Chapter 8
symbol: indicates pin to be drawn. Can be internal DLL type (such as ‘Green Box 5’,

‘Red Box 15’ - indicates size), or user supplied bitmap / path (e.g.
‘c:\pins\myIcon.bmp’)

location: the City/State (station) at which to draw pin (other geocode types not currently
supported)

data: any labels to be associated with pin

long PCRSDeletePin(char* layerID, char* ID);
Argument Values:
layerID: this is the map layer in which pin is drawn
ID: the pin ID itself

long PCRSDeletePinMap(const char* layerID);
Argument Values:
layerID: this is the map layer in which pins are drawn

// Calculates and draws trips on the map - no trip handle management required
long PCRSPlotTrip(const char* orig, const char* origRR, const char* origGeo,
const char* dest, const char* destRR, const char* destGeo, long* pMiles, const
char* routeName);
Argument Values:
<routing arguments synonymous with PCRSCalcTrip>
routeName: name which will be displayed in map window (also for deletion)

long PCRSPlotTrip2(const char* orig, const char* origRR, const char* origGeo,
const char* dest, const char* destRR, const char* destGeo, long* pMiles, const
char* routeName, const char* routeType, const char* routeMethod);
Argument Values:
<see PCRSPlotTrip above>
routeName: name which will be displayed in map window (also for deletion)
routeType: I (standard) or A (autoroutes)
routeMethod: F (familized, used for autoroutes) or N (not familized, used for standard)

 PC*MILER|Rail-Connect User’s Guide 70

// Draws lines on the map from a list of points
long PCRSPlotLine(const char* layerID, const char* ID, const char* importance,

const char* symbol, const char* locations);
Argument Values:
layerID: map layer to add the new line to
ID: unique identifier for this line
importance: a range of numbers indicating the zoom level at which the line

will display – see introduction to Chapter 8
lcoations: a string of points between which the line will be drawn (e.g. “Atlanta GA|Houston

TX” indicates origin of Atlanta, dest: Houston)

long PCRSFrameLine (const char* layerID, const char* ID);
Frames the line drawn with PCRSPlotLine.

// Draw routes in the map window
long PCRSAddRouteToMap(Trip trip);
Argument Values:
trip: draws a previously allocated and calculated trip in map window

// Delete routes from the map window
long PCRSDeleteRouteFromMap(Trip trip);
Deletes the route added using PCRSAddRouteToMap.

long PCRSDeleteTripByName(const char* routeName);
Argument Values:
routeName: name of route to be deleted (based on route’s display name)

long PCRSDeleteAllTrips();
Deletes all trips created using PCRSPlotTrip or PCRSPlotTrip2.

long PCRSDeleteLine(const char* layerID, const char* ID);
Argument Values:
layerID: this is the map layer in which line is drawn
ID: the line ID itself

// Layer management functions
long PCRSSetLayerVisiblity(const char* layerID, BOOL show);
This function changes the visibility of the layer specified by layerID. If the show
parameter is non-zero, the layer is visible. If the show parameter is zero, the layer is
hidden. It is NOT deleted. Layers can be shown or hidden as often as desired.

long PCRSFrameLayer(const char* layerID);
Zooms the map to include all the pins in the pinmap layer layerID.

long PCRSDeleteLayer(const char* layerID);
Deletes the layer specified by layerID.

 Appendix A: ‘C’ Function Declarations 71

long PCRSZoomIn();
Zooms the map in by one zoom level.

long PCRSZoomOut();
Zooms the map out by one zoom level.

Functions Deprecated in Version 22:

PCRSSetCompoundPinIcon(const char* symbol, const char* maskSymbol);
PCRSTogglePickTrains();
PCRSMoreDetail();
PCRSLessDetail();
PCRSToggleLegendScaleOfMiles();

 PC*MILER|Rail-Connect User’s Guide 72

Appendix B:
Troubleshooting Guide

Please consult the following list of frequently asked questions before contacting
Technical Support. If you cannot find an answer to your problem in the FAQs or
this User Guide, see section 2.4 for technical support contact options.

Running your application generates the error ‘Cannot find
PCRSRV32.DLL’

This error is caused by an incorrect installation. To run, PC*MILER|Rail-
Connect must find the dynamic link library PCRSRV32.DLL somewhere in
your path. By default, it looks in your Windows or Winnt folder.

⇒ Solution: Copy PCRSRV32.DLL to your Windows folder (usually
C:\WINDOWS), or reinstall the minimal installation of PC*MILER|Rail-
Connect. If you choose not to install the DLL in your Windows folder, that
folder must be in your PATH.

You have problems using overrides

Ensure that the override files are in your rail network data folder as specified in
the INI file (usually …\PCRWIN22\RAILNET). Also ensure that the override
files are named OVERRIDE.SPL, OVERRIDE.FSC, OVERRIDE.ERP,
OVERRIDE.NAM, or OVERRIDE.SCA (for SPLCs, FSACs, ERPCs, station
names, or railroad SCACs). Note that override files are currently not supported
for other geocode types.

The pcrstest.xls spreadsheet

The pcrstest.xls spreadsheet contains examples of the PC*MILER|Rail-
Spreadsheets function call in Microsoft Excel. It can be a useful reference as you
use PC*MILER|Rail-Spreadsheet functions. To see the completed samples,
double-click each #NAME? cell and then press <Enter>. If the functions return
-1 or another type of failure, the pcrss32.xla add-in may not be properly installed.
Refer to section 5.1 and check the installation of this file on your system.

 ‘Cannot find VBAEN.OLB’ error

Excel will attempt to access this file when it tries to load the Add-In. First, make
sure that the file vbaen.olb exists. It should be either in the Windows folder or the

B A
pp

en
di

x

 PC*MILER|Rail-Connect User’s Guide 73

System folder inside the Windows folder. If the file does not exist, you must re-
install Windows.

If the file exists, then the problem is in the Windows Registration File (reg.dat).
The location of vbaen.olb is saved in the reg.dat.

Make sure the path to this file in the reg.dat points to the correct location. You
can run REGEDIT /V to view/edit the reg.dat.

NOTE: We do not support making modifications to this file. Please make a
backup copy before making any changes.

Look for the key "TypeLib". Look for the Win16 selection. Under this section
should be a complete path to the vbaen.olb. Ensure the full path is correct.

‘Sub or function not defined’ error

When making calls to PC*MILER|Rail-Connect from a macro sheet, you may see
this error message. Refer to section 5.1 on how to check the installation of the
pcrss32.xla file on your system.

‘-1’ error

This error occurs when the user enters a place name that is not a valid
PC*MILER|Rail location. It can also occur if the Add-In was not able to
correctly load the PC*MILER|Rail database. Turn on debugging (set the debug
level to 12) to diagnose the Add-In startup, then shut down Excel and restart it.

Running your application generates the error ‘pcrwin32.exe has
stopped working’

Follow these steps:

1. Open the Start Menu

2. Select Settings Control Panel System and Security System
Advanced System Settings Advanced tab Performance Setting
Data Execution Prevention tab

3. Select “Turn on DEP for essential Windows programs and services only.”

 PC*MILER|Rail-Connect User’s Guide 74

Appendix C:
The PC*MILER|Rail TCP/IP Interface

This software provides a way to interact with the PC*MILER|Rail Connectivity
(DLL) Products running on Windows personal computers over a TCP/IP network
from any other computer platform. Most applicable functions of PC*MILER|Rail-
Connect are supported. Mapping functions are currently not supported via TCP/IP
interface.

Important Changes to the Interface

PC*MILER|Rail-Connect (version 15 and higher) is thread-safe. The TCP/IP
Interface does not disconnect automatically and thus can support true
simultaneous connections.

Note, however, that earlier versions of the above-mentioned sofware and ARE
NOT THREAD-SAFE, and the TCP/IP Interface will disconnect (revert to old
behavior) after every transaction.

Hardware Requirements

• PC with a 1.5-2 GHz processor and TCP/IP Capability
• UNIX or other host with TCP/IP Capability
• Physical Connection (cable)
• An additional 2 MB hard disk space

Software Requirements

• Microsoft Windows (7, 8 or 10)
• PC*MILER|Rail (V22)
• PC*MILER|Rail-Connect
• Client software on the UNIX host

1. Installation

The installation program copies the PC*MILER|Rail TCP/IP files into the default
directory:

c:\ALK Technologies\PCRWIN22\TCPIP.

C A
pp

en
di

x

 PC*MILER|Rail-Connect User’s Guide 75

PC*MILER|Rail-Connect must be installed prior to running the TCP/IP interface.
The interface program (pcmsock.exe) or the Windows Service (tcpsvc.exe)
requires a command-line parameter — a unique port number to which they will be
listening.

For PC*MILER|Rail-Connect:
pcmsock PC_MILERRAIL 2001

The server program comes with a tester program: tcptest.exe to connect to
PC*MILER|Rail-Connect. This test program sends commands to the server
engine that is running via TCP/IP. It includes a sample trip (tcptest.in) to send to
the engine.

2. Syntax (do not include brackets)

pcmsock [product code] [port number]

Product Code Product Name

PC_MILERRAIL = PC*MILER|Rail-Connect
(The above parameter is to be used as the Service’s ‘start’ parameters.)

3. Interface Specifics

The interface is completely text based. One can use a telnet application to test
the installation and familiarize oneself with the interface. For example (assuming
that the host PC has a 127.0.0.1 address):

For PC*MILER|Rail-Connect:
• telnet 127.0.0.1 [Port #]

When the connection is made the host PC (server) sends a prompt ending with the
word READY. Most of the routing functions listed in the corresponding
Connectivity manuals are available. The mapping functions and the functions
listed in section 5, APIs NOT Available Via TCP/IP, below are not available.
Also note that there are a few differences in the syntax. PC*MILER|Rail-Connect
functions do not require (and will not accept) the ServerID parameter. The strings
in the parameters must be quoted if they contain commas and/or parentheses.

Example:

telnet 127.0.0.1 [Port #] <Enter>
ALK PCMILER RAIL SERVER READY
pcrsnewtrip()<Enter>
0 -- this is a good return code
14460364 -- this is the trip ID

 PC*MILER|Rail-Connect User’s Guide 76

pcrscalctrip(14460364, "CHICAGO IL", "NS", "C","PHILADELPHIA
PA", "NS", "C") <Enter>

0 – this is a good return code
 8468 – distance in tenths of miles
 READY

pcrsdeletetrip(14460364) <Enter>
0 – this is a good return code
 READY

NOTE: When finished testing, simply exit your telnet session; there is no “kill”
command.

Syntax errors (wrong spelling of functions, missing parameters, etc.) will result
in textual error messages.

Example:

telnet 127.0.0.1 2001 <Enter>

ALK PCMILER SERVER READY
pcrssetrouteformula(14460364, "P") <Enter>
-401 – this is the error code associated with a parameter error

4. APIs Available Via TCP/IP

The following APIs are EXPOSED to the TCP/IP interface in PC*MILER|Rail:

PCRSARGetRptLength PCRSGetGeoMatch
PCRSAbout PCRSGetNumAutoRoutes
PCRSAddAutoRouteDest PCRSGetNumGeoMatches
PCRSAddAutoRouteOrig PCRSGetNumRptLines
PCRSAddAutoRouteVia PCRSGetNumStops
PCRSAddStop PCRSGetRpt
PCRSCalcAutoRoutes PCRSGetRptLength
PCRSCalcTrip PCRSGetRptLine
PCRSCalculate PCRSGetRRMatch
PCRSClearAutoRouter PCRSGetStop
PCRSClearStops PCRSJunctionLookup
PCRSConvertGeocode PCRSLatLongsEnRoute
PCRSDeleteStop PCRSNewTrip
PCRSDeleteTrip PCRSRRLookup
PCRSGeoLookup PCRSRRName2Num
PCRSGetAllStateRRMileage PCRSRRNum2Name
PCRSGetAllStateRRMileage1 PCRSSetIntermodalOnlyIncEx

 Appendix C: The PC*MILER|Rail TCP/IP Interface 77

PCRSGetARNumRptLines PCRSSetRouteFormula
PCRSGetARRpt PCRSSetRouteIncEx
PCRSGetARRptLine PCRSSetRouteMethod
PCRSGetAutoRouteLine PCRSSetRouteType
PCRSGetAutoRouteMiles PCRSSetUnitsKilometers
PCRSGetErrorString PCRSSetUnitsMiles

5. APIs NOT Available via TCP/IP

Mapping APIs Other APIs
PCRSAddRouteToMap PCRSPlotLine PCRSCleanupSrv
PCRSCreateMapChild PCRSPlotPin PCRSDeleteTripByName
PCRSCreateMapWin PCRSPlotTrip PCRSGetARLegInfo
PCRSDeleteAllTrips PCRSResizeMapChild PCRSGetError
PCRSDeleteLine PCRSZoomIn PCRSGetJunctionMatch
PCRSDeletePin PCRSZoomOut PCRSGetMaxStateRRs
PCRSDeletePinMap PCRSDeletePinMap PCRSGetMaxStates
PCRSDeleteRouteFromMap PCRSGetNumARLegs
 PCRSGetNumRouteLegs
 PCRSGetNumRouteLinks
 PCRSGetRRs
 PCRSGetRouteInfo
 PCRSGetRouteLegInfo
 PCRSGetStateMiles
 PCRSGetStateRRMiles
 PCRSInitSrv
 PCRSSetIncAMTK
 PCRSSetIncNonStationRR

 PC*MILER|Rail-Connect User’s Guide 78

Appendix D: Error Code Descriptions

Error codes you may encounter as you work with PC*MILER|Rail-Connect are
listed below.

NUMBER ERROR CODE ERROR MESSAGE

0 PCRS_OK Success
-1 PCRS_NOTOK Generic Failure
-104 PCRS_LOADNETWORK Could not load the network database.
-107 PCRS_BADNETDIR Invalid 'NetDir' setting in INI file.
-108 PCRS_EXPIRED License infraction: License has expired.
-112 PCRS_NO_LICENSE_FILE No license file exists.
-114 PCRS_USER_LIMIT_EXCEEDED User limit exceeded.
-201 PCRS_BADARG Invalid argument (or pointer) passed into API

function.
-202 PCRS_INVALIDPTR Invalid pointer
-209 PCRS_INVALIDTRIP Invalid trip ID
-211 PCRS_TRIP_NOTOK Internal trip problem (possible creation error).
-213 PCRS_SERVER_NOTOK Internal server problem (possible creation

error).
-214 PCRS_APPDICTERR Error getting App from AppDict.
-301 PCRS_BADRRSCAC Bad railroad abbreviation given.
-303 PCRS_BADRRLOC Bad location/railroad combination.
-317 PCRS_INVALID_CITY_LEN City Length is too long.
-319 PCRS_INVALID_ERPC_LEN ERPC Length is too long.
-320 PCRS_INVALID_SPLC_LEN SPLC Length is too long.
-321 PCRS_INVALID_FSAC_LEN FSAC Length is too long.
-322 PCRS_INVALID_R260_LEN R260 Length is too long.
-318 PCRS_INVALID_STATE_ABBREV Invalid State Abbreviation.
-323 PCRS_NOJUNCTIONS No Junctions found
-324 PCRS_ERR_BADRRJCT Inbound and Outbound Railroads do not

junction at this location.
-304 PCRS_BADSTOPINDX Invalid stop number given.
-305 PCRS_TOOFEWGEOCHARS Insufficient characters given for geocode

lookup.
-306 PCRS_STOPNOCLEANUPS No cleanups found for one or more stops in

this trip.
-307 PCRS_INVALIDPLACE Invalid place name (station/state or geocode

not found).
-308 PCRS_BADORIGSTOP Invalid Origin stop information.
-311 PCRS_BADGEOINDX Invalid geocode result index specified.

D A
pp

en
di

x

 PC*MILER|Rail-Connect User’s Guide 79

NUMBER ERROR CODE ERROR MESSAGE

-312 PCRS_BADPREVRRLOC Bad location/RR: Previous RR does not serve
this location.

-314 PCRS_CONVFROMFSACERR RR is required to convert from FSAC geocode
to another type.

-315 PCRS_CONVTOFSACERR RR is required to convert a geocode to FSAC
code.

-316 PCRS_NOINTERMODAL Station does not have intermodal service.
-325 PCRS_ERR_STATION_EXCLUDED Station Excluded because option is set to

exclude intermodal only stations.
-404 PCRS_TRIPNOTREADY The trip is not ready to calculate.
-405 PCRS_ROUTINGERROR Calculation failed: Portions of the trip are

invalid.
-406 PCRS_NOTRIPLEGS This trip contains no legs ... check for previous

error.
-407 PCRS_NOTENOUGHSTOPS Not enough stops to calculate the trip.
-409 PCRS_BADAUTORTEINDX Invalid AutoRoute index specified.
-410 PCRS_NOAUTOROUTES No AutoRoutes have been generated.
-501 PCRS_REPORTERR Error getting report information.
-502 PCRS_BADRPTROW Invalid report line number requested.
-601 PCRS_MAPCREATERR Error creating map window.
-602 PCRS_MAPREADERR Error reading map initialization file.
-603 PCRS_MAPRESIZEERR Error resizing the PC*MILER|Rail map (child)

window.
-604 PCRS_MAXGRROUTES Cannot add route to map. Max routes already

added.
-605 PCRS_GRRTE_NOTFOUND Cannot find given route in map.
-701 PCRS_PINERR Error mapping pin/line.
-702 PCRS_PINGEOERR Error geocoding pin or line location.
-608 PCRS_MAP_INVALID_IMPORTANCE Invalid Importance
-610 PCRS_MAP_INVALID_LOCATION Invalid Location
-609 PCRS_MAP_INVALID_STYLE Invalid Style
-607 PCRS_MAP_INVALID_OBJID Internal Map Error
-606 PCRS_MAPLAYER_NOTFOUND Layer on Map Not Found

 PC*MILER|Rail-Connect User’s Guide 80

Appendix E: State Index Values

Index values for each state, province and estado in North America are listed
below. These values are used with the API PCRSGetStateRRMiles.

State Abbreviation State Index

AB 1
AG 2
AK 3
AL 4
AR 5
AZ 6
BC 7
BJ 8
CA 9
CH 10
CI 11
CL 12
CO 13
CP 14
CT 15
CU 16
DC 17
DE 18
DF 19
DG 20
EM 21
FL 22
GA 23
GJ 24
HG 25
IA 26
ID 27
IL 28
IN 29
JA 30
KS 31
KY 32
LA 33
MA 34
MB 35
MD 36
ME 37
MH 38
MI 39

E A
pp

en
di

x

 PC*MILER|Rail-Connect User’s Guide 81

MN 40
MO 41
MR 42
MS 43
MT 44
NA 45
NB 46
NC 47
ND 48
NE 49
NF 50
NH 51
NJ 52
NL 53
NM 54
NS 55
NT 56
NV 57
NY 58
OA 59
OH 60
OK 61
ON 62
OR 63
PA 64
PE 65
PQ 66
PU 67
QA 68
RI 69
SC 70
SD 71
SI 72
SK 73
SL 74
SO 75
TA 76
TL 77
TM 78
TN 79
TX 80
UT 81
VA 82
VL 83
VT 84
WA 85
WI 86
WV 87
WY 88
YC 89
ZT 90

 PC*MILER|Rail-Connect User’s Guide 82

	Word Bookmarks
	OLE_LINK3
	OLE_LINK4
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9

